Norbornene-Based Copolymers with Iridium Complexes and Bis(carbazolyl)fluorene Groups in Their Side-Chains and Their Use in Light-Emitting Diodes

Solution-processable copolymers with pendant phosphorescent iridium complexes and 2,7-di(carbazol-9-yl)fluorene-type host moieties were synthesized using ruthenium-catalyzed ring-opening metathesis polymerization. Low polydispersity indices and molecular weights around 20 000 Da were obtained for al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2007-11, Vol.19 (23), p.5602-5608
Hauptverfasser: Kimyonok, Alpay, Domercq, Benoit, Haldi, Andreas, Cho, Jian-Yang, Carlise, Joseph R, Wang, Xian-Yong, Hayden, Lauren E, Jones, Simon C, Barlow, Stephen, Marder, Seth R, Kippelen, Bernard, Weck, Marcus
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solution-processable copolymers with pendant phosphorescent iridium complexes and 2,7-di(carbazol-9-yl)fluorene-type host moieties were synthesized using ruthenium-catalyzed ring-opening metathesis polymerization. Low polydispersity indices and molecular weights around 20 000 Da were obtained for all copolymers. As a result of the living character of the polymerization of the monomer containing the host moiety, a high degree of control over the molecular weights of all copolymers can be obtained. The photo- and electroluminescence properties of the copolymers were investigated. All copolymers retained the photo- and electrophysical properties of the corresponding nonpolymeric iridium complexes. Furthermore, as a proof of principle for the potential use of these materials, organic light-emitting devices were fabricated using the orange-emitting copolymer. A maximum external quantum efficiency of 1.9% at 100 cd/m2 and a turn-on voltage of 3.7 V were obtained with photoluminescence quantum yield of 0.10 demonstrating the potential of these copolymers as emissive materials for display and lighting applications.
ISSN:0897-4756
1520-5002
DOI:10.1021/cm0717357