Estimating the Polymer−Metal Work of Adhesion from Molecular Dynamics Simulations

The thermodynamic concept used to quantify adhesion on a fundamental molecular level is the work of adhesion. However, most of the experimental techniques give no, or very limited information about its magnitude. In this paper, a way to estimate the work of adhesion for copper−(acrylonitrile-butadie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2007-02, Vol.19 (4), p.903-907
Hauptverfasser: Kisin, Srdjan, Božović Vukić, Jelena, van der Varst, Paul G. Th, de With, Gijsbertus, Koning, Cor E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 907
container_issue 4
container_start_page 903
container_title Chemistry of materials
container_volume 19
creator Kisin, Srdjan
Božović Vukić, Jelena
van der Varst, Paul G. Th
de With, Gijsbertus
Koning, Cor E
description The thermodynamic concept used to quantify adhesion on a fundamental molecular level is the work of adhesion. However, most of the experimental techniques give no, or very limited information about its magnitude. In this paper, a way to estimate the work of adhesion for copper−(acrylonitrile-butadiene-styrene) (ABS) interface using molecular dynamics simulations is presented. The work of adhesion is calculated from the interactions between single molecules constituting the ABS polymer (poly(styrene-co-acrylonitrile) and polybutadiene molecules) and copper (oxide) surface, using their van der Waals contact area. The calculated work of adhesion seems to be independent of the number of polymer molecules present on the copper surface, monomer residue unit sequence within the polymer molecule, and the type of copper surface. Introduction of oxygen atoms to the metallic surface and the polymer molecules significantly increases the work of adhesion. The highest work of adhesion was found between the oxidized copper surface and high oxygen content copolymer poly(styrene-alt-maleic anhydride). Results are shown to qualitatively correspond to previously reported experimental observations.
doi_str_mv 10.1021/cm0621702
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cm0621702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d143220875</sourcerecordid><originalsourceid>FETCH-LOGICAL-a363t-1698da384610a592b007db2822d445c27b2cb8328efd27913bd8a1d064e3ec8b3</originalsourceid><addsrcrecordid>eNpt0EFLwzAYBuAgCs7pwX-QiwcP1S9Jm6THMacTNhxuongJaZq6bm0jSQfuH3j2J_pLrEx28vTBx8ML74vQOYErApRcmxo4JQLoAeqRhEKUANBD1AOZiigWCT9GJyGsAEjHZQ_NR6Eta92WzRtulxbPXLWtrf_-_JraVlf42fk1dgUe5EsbStfgwrsaT11lzabSHt9sG12XJuB5WXePtiPhFB0Vugr27O_20dPtaDEcR5OHu_vhYBJpxlkbEZ7KXDMZcwI6SWkGIPKMSkrzOE4MFRk1mWRU2iKnIiUsy6UmOfDYMmtkxvrocpdrvAvB20K9-66L3yoC6ncNtV-js9HOlqG1H3uo_VpxwUSiFrO5GsPj60s6TBXv_MXOaxPUym180zX5J_cHO2FtrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimating the Polymer−Metal Work of Adhesion from Molecular Dynamics Simulations</title><source>ACS Publications</source><creator>Kisin, Srdjan ; Božović Vukić, Jelena ; van der Varst, Paul G. Th ; de With, Gijsbertus ; Koning, Cor E</creator><creatorcontrib>Kisin, Srdjan ; Božović Vukić, Jelena ; van der Varst, Paul G. Th ; de With, Gijsbertus ; Koning, Cor E</creatorcontrib><description>The thermodynamic concept used to quantify adhesion on a fundamental molecular level is the work of adhesion. However, most of the experimental techniques give no, or very limited information about its magnitude. In this paper, a way to estimate the work of adhesion for copper−(acrylonitrile-butadiene-styrene) (ABS) interface using molecular dynamics simulations is presented. The work of adhesion is calculated from the interactions between single molecules constituting the ABS polymer (poly(styrene-co-acrylonitrile) and polybutadiene molecules) and copper (oxide) surface, using their van der Waals contact area. The calculated work of adhesion seems to be independent of the number of polymer molecules present on the copper surface, monomer residue unit sequence within the polymer molecule, and the type of copper surface. Introduction of oxygen atoms to the metallic surface and the polymer molecules significantly increases the work of adhesion. The highest work of adhesion was found between the oxidized copper surface and high oxygen content copolymer poly(styrene-alt-maleic anhydride). Results are shown to qualitatively correspond to previously reported experimental observations.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm0621702</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2007-02, Vol.19 (4), p.903-907</ispartof><rights>Copyright © 2007 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a363t-1698da384610a592b007db2822d445c27b2cb8328efd27913bd8a1d064e3ec8b3</citedby><cites>FETCH-LOGICAL-a363t-1698da384610a592b007db2822d445c27b2cb8328efd27913bd8a1d064e3ec8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm0621702$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm0621702$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Kisin, Srdjan</creatorcontrib><creatorcontrib>Božović Vukić, Jelena</creatorcontrib><creatorcontrib>van der Varst, Paul G. Th</creatorcontrib><creatorcontrib>de With, Gijsbertus</creatorcontrib><creatorcontrib>Koning, Cor E</creatorcontrib><title>Estimating the Polymer−Metal Work of Adhesion from Molecular Dynamics Simulations</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>The thermodynamic concept used to quantify adhesion on a fundamental molecular level is the work of adhesion. However, most of the experimental techniques give no, or very limited information about its magnitude. In this paper, a way to estimate the work of adhesion for copper−(acrylonitrile-butadiene-styrene) (ABS) interface using molecular dynamics simulations is presented. The work of adhesion is calculated from the interactions between single molecules constituting the ABS polymer (poly(styrene-co-acrylonitrile) and polybutadiene molecules) and copper (oxide) surface, using their van der Waals contact area. The calculated work of adhesion seems to be independent of the number of polymer molecules present on the copper surface, monomer residue unit sequence within the polymer molecule, and the type of copper surface. Introduction of oxygen atoms to the metallic surface and the polymer molecules significantly increases the work of adhesion. The highest work of adhesion was found between the oxidized copper surface and high oxygen content copolymer poly(styrene-alt-maleic anhydride). Results are shown to qualitatively correspond to previously reported experimental observations.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpt0EFLwzAYBuAgCs7pwX-QiwcP1S9Jm6THMacTNhxuongJaZq6bm0jSQfuH3j2J_pLrEx28vTBx8ML74vQOYErApRcmxo4JQLoAeqRhEKUANBD1AOZiigWCT9GJyGsAEjHZQ_NR6Eta92WzRtulxbPXLWtrf_-_JraVlf42fk1dgUe5EsbStfgwrsaT11lzabSHt9sG12XJuB5WXePtiPhFB0Vugr27O_20dPtaDEcR5OHu_vhYBJpxlkbEZ7KXDMZcwI6SWkGIPKMSkrzOE4MFRk1mWRU2iKnIiUsy6UmOfDYMmtkxvrocpdrvAvB20K9-66L3yoC6ncNtV-js9HOlqG1H3uo_VpxwUSiFrO5GsPj60s6TBXv_MXOaxPUym180zX5J_cHO2FtrA</recordid><startdate>20070220</startdate><enddate>20070220</enddate><creator>Kisin, Srdjan</creator><creator>Božović Vukić, Jelena</creator><creator>van der Varst, Paul G. Th</creator><creator>de With, Gijsbertus</creator><creator>Koning, Cor E</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070220</creationdate><title>Estimating the Polymer−Metal Work of Adhesion from Molecular Dynamics Simulations</title><author>Kisin, Srdjan ; Božović Vukić, Jelena ; van der Varst, Paul G. Th ; de With, Gijsbertus ; Koning, Cor E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a363t-1698da384610a592b007db2822d445c27b2cb8328efd27913bd8a1d064e3ec8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kisin, Srdjan</creatorcontrib><creatorcontrib>Božović Vukić, Jelena</creatorcontrib><creatorcontrib>van der Varst, Paul G. Th</creatorcontrib><creatorcontrib>de With, Gijsbertus</creatorcontrib><creatorcontrib>Koning, Cor E</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kisin, Srdjan</au><au>Božović Vukić, Jelena</au><au>van der Varst, Paul G. Th</au><au>de With, Gijsbertus</au><au>Koning, Cor E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the Polymer−Metal Work of Adhesion from Molecular Dynamics Simulations</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2007-02-20</date><risdate>2007</risdate><volume>19</volume><issue>4</issue><spage>903</spage><epage>907</epage><pages>903-907</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>The thermodynamic concept used to quantify adhesion on a fundamental molecular level is the work of adhesion. However, most of the experimental techniques give no, or very limited information about its magnitude. In this paper, a way to estimate the work of adhesion for copper−(acrylonitrile-butadiene-styrene) (ABS) interface using molecular dynamics simulations is presented. The work of adhesion is calculated from the interactions between single molecules constituting the ABS polymer (poly(styrene-co-acrylonitrile) and polybutadiene molecules) and copper (oxide) surface, using their van der Waals contact area. The calculated work of adhesion seems to be independent of the number of polymer molecules present on the copper surface, monomer residue unit sequence within the polymer molecule, and the type of copper surface. Introduction of oxygen atoms to the metallic surface and the polymer molecules significantly increases the work of adhesion. The highest work of adhesion was found between the oxidized copper surface and high oxygen content copolymer poly(styrene-alt-maleic anhydride). Results are shown to qualitatively correspond to previously reported experimental observations.</abstract><pub>American Chemical Society</pub><doi>10.1021/cm0621702</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2007-02, Vol.19 (4), p.903-907
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_cm0621702
source ACS Publications
title Estimating the Polymer−Metal Work of Adhesion from Molecular Dynamics Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20Polymer%E2%88%92Metal%20Work%20of%20Adhesion%20from%20Molecular%20Dynamics%20Simulations&rft.jtitle=Chemistry%20of%20materials&rft.au=Kisin,%20Srdjan&rft.date=2007-02-20&rft.volume=19&rft.issue=4&rft.spage=903&rft.epage=907&rft.pages=903-907&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm0621702&rft_dat=%3Cacs_cross%3Ed143220875%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true