Molecular Modeling of Interlayer Catalytic Sites for Aniline Polymerization in a Zirconium Mixed Phosphonate Phosphate

Theoretical modeling of a mixed zirconium 3-carboxypropylphosphonate phosphate system, Zr(O3P(CH2)3COOH) x (O3POH)2 - x , is reported both for a series of stoichiometric compounds and for an aniline-intercalated system. Modeling of the interlayer spacing variation of selected stoichiometries of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2003-01, Vol.15 (2), p.390-394
Hauptverfasser: Amicangelo, Jay C, Rosenthal, Guy L, Leenstra, Willem R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 394
container_issue 2
container_start_page 390
container_title Chemistry of materials
container_volume 15
creator Amicangelo, Jay C
Rosenthal, Guy L
Leenstra, Willem R
description Theoretical modeling of a mixed zirconium 3-carboxypropylphosphonate phosphate system, Zr(O3P(CH2)3COOH) x (O3POH)2 - x , is reported both for a series of stoichiometric compounds and for an aniline-intercalated system. Modeling of the interlayer spacing variation of selected stoichiometries of the host series predicts linear behavior for the intermediate compositions (0.5 ≤ x ≤ 1.5) accompanied by a significant contraction at the terminal stoichiometries (x = 0.0 and 2.0). Our results demonstrate that such behavior is a general feature of layered zirconium phosphonates whose pendant groups possess conformational degrees of freedom. For the host−guest series, the results have provided insight into the energetically stable orientations of the aniline molecule within the interlayer. It was found that the most probable geometry was one in which the aniline C 2 axis is in a tilted orientation with respect to the zirconium planes for the host systems studied. However, at slightly higher energy, molecular modeling predicts aniline to be in an orientation corresponding to the C 2 axis being parallel to the zirconium planes, which would be favorable for the formation of polyaniline within the interlayer. These results are interpreted in the context of experimental findings published earlier.
doi_str_mv 10.1021/cm020295a
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cm020295a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b254687246</sourcerecordid><originalsourceid>FETCH-LOGICAL-a391t-23c168c6647cac76d2428d8cb804bca669c8bba8a589144ab8a5513dd6666ce3</originalsourceid><addsrcrecordid>eNptkEFPAjEQhRujiYge_Ae9ePCw2u52u92jogIJRBROXprZbleKS0vaxYC_3jUQuDiXecl88ybzELqm5I6SmN6rJYlJnKdwgjo0jUmUEhKfog4ReRaxLOXn6CKEBSG0xUUHfY9drdW6Bo_HrtS1sZ_YVXhoG-1r2GqPe9BAvW2MwlPT6IAr5_GDNS2p8cTV26X25gca4yw2FgP-MF45a9ZLPDYbXeLJ3IXV3Flo9F636hKdVVAHfbXvXTR7eZ71BtHotT_sPYwiSHLaRHGiKBeKc5YpUBkvYxaLUqhCEFYo4DxXoihAQCpyyhgUrUppUpa8LaWTLrrd2SrvQvC6kitvluC3khL5l5c85NWyNzt2BUFBXXmwyoTjAmN5nlPectGOM6HRm8Mc_JfkWZKlcjaZyrenQX_E3h9ldvQFFeTCrb1tH_7n_i-3g4eT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Modeling of Interlayer Catalytic Sites for Aniline Polymerization in a Zirconium Mixed Phosphonate Phosphate</title><source>ACS Publications</source><creator>Amicangelo, Jay C ; Rosenthal, Guy L ; Leenstra, Willem R</creator><creatorcontrib>Amicangelo, Jay C ; Rosenthal, Guy L ; Leenstra, Willem R</creatorcontrib><description>Theoretical modeling of a mixed zirconium 3-carboxypropylphosphonate phosphate system, Zr(O3P(CH2)3COOH) x (O3POH)2 - x , is reported both for a series of stoichiometric compounds and for an aniline-intercalated system. Modeling of the interlayer spacing variation of selected stoichiometries of the host series predicts linear behavior for the intermediate compositions (0.5 ≤ x ≤ 1.5) accompanied by a significant contraction at the terminal stoichiometries (x = 0.0 and 2.0). Our results demonstrate that such behavior is a general feature of layered zirconium phosphonates whose pendant groups possess conformational degrees of freedom. For the host−guest series, the results have provided insight into the energetically stable orientations of the aniline molecule within the interlayer. It was found that the most probable geometry was one in which the aniline C 2 axis is in a tilted orientation with respect to the zirconium planes for the host systems studied. However, at slightly higher energy, molecular modeling predicts aniline to be in an orientation corresponding to the C 2 axis being parallel to the zirconium planes, which would be favorable for the formation of polyaniline within the interlayer. These results are interpreted in the context of experimental findings published earlier.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm020295a</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Polymerization ; Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><ispartof>Chemistry of materials, 2003-01, Vol.15 (2), p.390-394</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a391t-23c168c6647cac76d2428d8cb804bca669c8bba8a589144ab8a5513dd6666ce3</citedby><cites>FETCH-LOGICAL-a391t-23c168c6647cac76d2428d8cb804bca669c8bba8a589144ab8a5513dd6666ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm020295a$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm020295a$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14499916$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Amicangelo, Jay C</creatorcontrib><creatorcontrib>Rosenthal, Guy L</creatorcontrib><creatorcontrib>Leenstra, Willem R</creatorcontrib><title>Molecular Modeling of Interlayer Catalytic Sites for Aniline Polymerization in a Zirconium Mixed Phosphonate Phosphate</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Theoretical modeling of a mixed zirconium 3-carboxypropylphosphonate phosphate system, Zr(O3P(CH2)3COOH) x (O3POH)2 - x , is reported both for a series of stoichiometric compounds and for an aniline-intercalated system. Modeling of the interlayer spacing variation of selected stoichiometries of the host series predicts linear behavior for the intermediate compositions (0.5 ≤ x ≤ 1.5) accompanied by a significant contraction at the terminal stoichiometries (x = 0.0 and 2.0). Our results demonstrate that such behavior is a general feature of layered zirconium phosphonates whose pendant groups possess conformational degrees of freedom. For the host−guest series, the results have provided insight into the energetically stable orientations of the aniline molecule within the interlayer. It was found that the most probable geometry was one in which the aniline C 2 axis is in a tilted orientation with respect to the zirconium planes for the host systems studied. However, at slightly higher energy, molecular modeling predicts aniline to be in an orientation corresponding to the C 2 axis being parallel to the zirconium planes, which would be favorable for the formation of polyaniline within the interlayer. These results are interpreted in the context of experimental findings published earlier.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymerization</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNptkEFPAjEQhRujiYge_Ae9ePCw2u52u92jogIJRBROXprZbleKS0vaxYC_3jUQuDiXecl88ybzELqm5I6SmN6rJYlJnKdwgjo0jUmUEhKfog4ReRaxLOXn6CKEBSG0xUUHfY9drdW6Bo_HrtS1sZ_YVXhoG-1r2GqPe9BAvW2MwlPT6IAr5_GDNS2p8cTV26X25gca4yw2FgP-MF45a9ZLPDYbXeLJ3IXV3Flo9F636hKdVVAHfbXvXTR7eZ71BtHotT_sPYwiSHLaRHGiKBeKc5YpUBkvYxaLUqhCEFYo4DxXoihAQCpyyhgUrUppUpa8LaWTLrrd2SrvQvC6kitvluC3khL5l5c85NWyNzt2BUFBXXmwyoTjAmN5nlPectGOM6HRm8Mc_JfkWZKlcjaZyrenQX_E3h9ldvQFFeTCrb1tH_7n_i-3g4eT</recordid><startdate>20030128</startdate><enddate>20030128</enddate><creator>Amicangelo, Jay C</creator><creator>Rosenthal, Guy L</creator><creator>Leenstra, Willem R</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030128</creationdate><title>Molecular Modeling of Interlayer Catalytic Sites for Aniline Polymerization in a Zirconium Mixed Phosphonate Phosphate</title><author>Amicangelo, Jay C ; Rosenthal, Guy L ; Leenstra, Willem R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a391t-23c168c6647cac76d2428d8cb804bca669c8bba8a589144ab8a5513dd6666ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymerization</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amicangelo, Jay C</creatorcontrib><creatorcontrib>Rosenthal, Guy L</creatorcontrib><creatorcontrib>Leenstra, Willem R</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amicangelo, Jay C</au><au>Rosenthal, Guy L</au><au>Leenstra, Willem R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Modeling of Interlayer Catalytic Sites for Aniline Polymerization in a Zirconium Mixed Phosphonate Phosphate</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2003-01-28</date><risdate>2003</risdate><volume>15</volume><issue>2</issue><spage>390</spage><epage>394</epage><pages>390-394</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Theoretical modeling of a mixed zirconium 3-carboxypropylphosphonate phosphate system, Zr(O3P(CH2)3COOH) x (O3POH)2 - x , is reported both for a series of stoichiometric compounds and for an aniline-intercalated system. Modeling of the interlayer spacing variation of selected stoichiometries of the host series predicts linear behavior for the intermediate compositions (0.5 ≤ x ≤ 1.5) accompanied by a significant contraction at the terminal stoichiometries (x = 0.0 and 2.0). Our results demonstrate that such behavior is a general feature of layered zirconium phosphonates whose pendant groups possess conformational degrees of freedom. For the host−guest series, the results have provided insight into the energetically stable orientations of the aniline molecule within the interlayer. It was found that the most probable geometry was one in which the aniline C 2 axis is in a tilted orientation with respect to the zirconium planes for the host systems studied. However, at slightly higher energy, molecular modeling predicts aniline to be in an orientation corresponding to the C 2 axis being parallel to the zirconium planes, which would be favorable for the formation of polyaniline within the interlayer. These results are interpreted in the context of experimental findings published earlier.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/cm020295a</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2003-01, Vol.15 (2), p.390-394
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_cm020295a
source ACS Publications
subjects Applied sciences
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Polymerization
Preparation, kinetics, thermodynamics, mechanism and catalysts
title Molecular Modeling of Interlayer Catalytic Sites for Aniline Polymerization in a Zirconium Mixed Phosphonate Phosphate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T22%3A38%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Modeling%20of%20Interlayer%20Catalytic%20Sites%20for%20Aniline%20Polymerization%20in%20a%20Zirconium%20Mixed%20Phosphonate%20Phosphate&rft.jtitle=Chemistry%20of%20materials&rft.au=Amicangelo,%20Jay%20C&rft.date=2003-01-28&rft.volume=15&rft.issue=2&rft.spage=390&rft.epage=394&rft.pages=390-394&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm020295a&rft_dat=%3Cacs_cross%3Eb254687246%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true