Prediction of Mutagenicity of Aromatic and Heteroaromatic Amines from Structure:  A Hierarchical QSAR Approach

Due to the lack of experimental data, there has been increasing use of theoretical structural descriptors in the hazard assessment of chemicals. We have used a hierarchical approach to develop class-specific quantitative structure−activity relationship (QSAR) models for the prediction of mutagenicit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chemical Information and Computer Sciences 2001-05, Vol.41 (3), p.671-678
Hauptverfasser: Basak, Subhash C, Mills, Denise R, Balaban, Alexandru T, Gute, Brian D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 678
container_issue 3
container_start_page 671
container_title Journal of Chemical Information and Computer Sciences
container_volume 41
creator Basak, Subhash C
Mills, Denise R
Balaban, Alexandru T
Gute, Brian D
description Due to the lack of experimental data, there has been increasing use of theoretical structural descriptors in the hazard assessment of chemicals. We have used a hierarchical approach to develop class-specific quantitative structure−activity relationship (QSAR) models for the prediction of mutagenicity of a set of 95 aromatic and heteroaromatic amines. The hierarchical approach begins with the simplest molecular descriptors, the topostructural, which encode limited chemical information. The complexity is then increased, adding topochemical, geometric, and finally quantum chemical parameters. We have also added log P to the set of independent variables. The results indicate that the topological parameters, i.e., the topostructural and topochemical indices, explain the majority of the variance, and that the inclusion of log P, geometric, and quantum chemical parameters does not result in significantly improved predictive models.
doi_str_mv 10.1021/ci000126f
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_ci000126f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_K98MK2MB_S</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-45cf10eecf09cc70ffa771636c3c6a8af39d4f728fedc657f93484645cf38fa23</originalsourceid><addsrcrecordid>eNptkLtOxDAQRS0EYpdHwQ8gNxQUATtOnJguIGDRsuIRkOgsM7FZA3nIcSToaPlNvoSsAktDNboz585oLkI7lBxQEtJDsIQQGnKzgsY0jkQgOHlYRWNCRByEjKUjtNG2z4QwJni4jkaURpSQKB6j5trpwoK3dYVrg2edV0-6smD9-0Jnri6Vt4BVVeCJ9trV6reVlbbSLTa9xrl3HfjO6aOvj0-c4YnVTjmYW1Cv-CbPbnHWNL0X5ltozajXVm__1E10f3Z6dzIJLq_OL06yy0CxSPggisFQojUYIgASYoxKEsoZBwZcpcowUUQmCVOjC-BxYgSL0ogvbCw1KmSbaH_YC65uW6eNbJwtlXuXlMhFanKZWs_uDmzTPZa6-CN_YuqBYABs6_Xbcq7ci-QJS2J5d53LqUhn03B2LPOe3xt4Ba18rjtX9a_-c_gbHwyEtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of Mutagenicity of Aromatic and Heteroaromatic Amines from Structure:  A Hierarchical QSAR Approach</title><source>ACS Publications</source><source>MEDLINE</source><creator>Basak, Subhash C ; Mills, Denise R ; Balaban, Alexandru T ; Gute, Brian D</creator><creatorcontrib>Basak, Subhash C ; Mills, Denise R ; Balaban, Alexandru T ; Gute, Brian D</creatorcontrib><description>Due to the lack of experimental data, there has been increasing use of theoretical structural descriptors in the hazard assessment of chemicals. We have used a hierarchical approach to develop class-specific quantitative structure−activity relationship (QSAR) models for the prediction of mutagenicity of a set of 95 aromatic and heteroaromatic amines. The hierarchical approach begins with the simplest molecular descriptors, the topostructural, which encode limited chemical information. The complexity is then increased, adding topochemical, geometric, and finally quantum chemical parameters. We have also added log P to the set of independent variables. The results indicate that the topological parameters, i.e., the topostructural and topochemical indices, explain the majority of the variance, and that the inclusion of log P, geometric, and quantum chemical parameters does not result in significantly improved predictive models.</description><identifier>ISSN: 0095-2338</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/ci000126f</identifier><identifier>PMID: 11410045</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Databases, Factual ; Heterocyclic Compounds - chemistry ; Heterocyclic Compounds - toxicity ; Hydrocarbons, Aromatic - chemistry ; Hydrocarbons, Aromatic - toxicity ; Mutagens - chemistry ; Mutagens - toxicity ; Quantitative Structure-Activity Relationship ; Quantum Theory ; Salmonella typhimurium - drug effects ; Salmonella typhimurium - genetics</subject><ispartof>Journal of Chemical Information and Computer Sciences, 2001-05, Vol.41 (3), p.671-678</ispartof><rights>Copyright © 2001 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-45cf10eecf09cc70ffa771636c3c6a8af39d4f728fedc657f93484645cf38fa23</citedby><cites>FETCH-LOGICAL-a349t-45cf10eecf09cc70ffa771636c3c6a8af39d4f728fedc657f93484645cf38fa23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ci000126f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ci000126f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56715,56765</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11410045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basak, Subhash C</creatorcontrib><creatorcontrib>Mills, Denise R</creatorcontrib><creatorcontrib>Balaban, Alexandru T</creatorcontrib><creatorcontrib>Gute, Brian D</creatorcontrib><title>Prediction of Mutagenicity of Aromatic and Heteroaromatic Amines from Structure:  A Hierarchical QSAR Approach</title><title>Journal of Chemical Information and Computer Sciences</title><addtitle>J. Chem. Inf. Comput. Sci</addtitle><description>Due to the lack of experimental data, there has been increasing use of theoretical structural descriptors in the hazard assessment of chemicals. We have used a hierarchical approach to develop class-specific quantitative structure−activity relationship (QSAR) models for the prediction of mutagenicity of a set of 95 aromatic and heteroaromatic amines. The hierarchical approach begins with the simplest molecular descriptors, the topostructural, which encode limited chemical information. The complexity is then increased, adding topochemical, geometric, and finally quantum chemical parameters. We have also added log P to the set of independent variables. The results indicate that the topological parameters, i.e., the topostructural and topochemical indices, explain the majority of the variance, and that the inclusion of log P, geometric, and quantum chemical parameters does not result in significantly improved predictive models.</description><subject>Algorithms</subject><subject>Databases, Factual</subject><subject>Heterocyclic Compounds - chemistry</subject><subject>Heterocyclic Compounds - toxicity</subject><subject>Hydrocarbons, Aromatic - chemistry</subject><subject>Hydrocarbons, Aromatic - toxicity</subject><subject>Mutagens - chemistry</subject><subject>Mutagens - toxicity</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Quantum Theory</subject><subject>Salmonella typhimurium - drug effects</subject><subject>Salmonella typhimurium - genetics</subject><issn>0095-2338</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkLtOxDAQRS0EYpdHwQ8gNxQUATtOnJguIGDRsuIRkOgsM7FZA3nIcSToaPlNvoSsAktDNboz585oLkI7lBxQEtJDsIQQGnKzgsY0jkQgOHlYRWNCRByEjKUjtNG2z4QwJni4jkaURpSQKB6j5trpwoK3dYVrg2edV0-6smD9-0Jnri6Vt4BVVeCJ9trV6reVlbbSLTa9xrl3HfjO6aOvj0-c4YnVTjmYW1Cv-CbPbnHWNL0X5ltozajXVm__1E10f3Z6dzIJLq_OL06yy0CxSPggisFQojUYIgASYoxKEsoZBwZcpcowUUQmCVOjC-BxYgSL0ogvbCw1KmSbaH_YC65uW6eNbJwtlXuXlMhFanKZWs_uDmzTPZa6-CN_YuqBYABs6_Xbcq7ci-QJS2J5d53LqUhn03B2LPOe3xt4Ba18rjtX9a_-c_gbHwyEtg</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Basak, Subhash C</creator><creator>Mills, Denise R</creator><creator>Balaban, Alexandru T</creator><creator>Gute, Brian D</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010501</creationdate><title>Prediction of Mutagenicity of Aromatic and Heteroaromatic Amines from Structure:  A Hierarchical QSAR Approach</title><author>Basak, Subhash C ; Mills, Denise R ; Balaban, Alexandru T ; Gute, Brian D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-45cf10eecf09cc70ffa771636c3c6a8af39d4f728fedc657f93484645cf38fa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Databases, Factual</topic><topic>Heterocyclic Compounds - chemistry</topic><topic>Heterocyclic Compounds - toxicity</topic><topic>Hydrocarbons, Aromatic - chemistry</topic><topic>Hydrocarbons, Aromatic - toxicity</topic><topic>Mutagens - chemistry</topic><topic>Mutagens - toxicity</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Quantum Theory</topic><topic>Salmonella typhimurium - drug effects</topic><topic>Salmonella typhimurium - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basak, Subhash C</creatorcontrib><creatorcontrib>Mills, Denise R</creatorcontrib><creatorcontrib>Balaban, Alexandru T</creatorcontrib><creatorcontrib>Gute, Brian D</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of Chemical Information and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basak, Subhash C</au><au>Mills, Denise R</au><au>Balaban, Alexandru T</au><au>Gute, Brian D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Mutagenicity of Aromatic and Heteroaromatic Amines from Structure:  A Hierarchical QSAR Approach</atitle><jtitle>Journal of Chemical Information and Computer Sciences</jtitle><addtitle>J. Chem. Inf. Comput. Sci</addtitle><date>2001-05-01</date><risdate>2001</risdate><volume>41</volume><issue>3</issue><spage>671</spage><epage>678</epage><pages>671-678</pages><issn>0095-2338</issn><eissn>1549-960X</eissn><abstract>Due to the lack of experimental data, there has been increasing use of theoretical structural descriptors in the hazard assessment of chemicals. We have used a hierarchical approach to develop class-specific quantitative structure−activity relationship (QSAR) models for the prediction of mutagenicity of a set of 95 aromatic and heteroaromatic amines. The hierarchical approach begins with the simplest molecular descriptors, the topostructural, which encode limited chemical information. The complexity is then increased, adding topochemical, geometric, and finally quantum chemical parameters. We have also added log P to the set of independent variables. The results indicate that the topological parameters, i.e., the topostructural and topochemical indices, explain the majority of the variance, and that the inclusion of log P, geometric, and quantum chemical parameters does not result in significantly improved predictive models.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>11410045</pmid><doi>10.1021/ci000126f</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0095-2338
ispartof Journal of Chemical Information and Computer Sciences, 2001-05, Vol.41 (3), p.671-678
issn 0095-2338
1549-960X
language eng
recordid cdi_crossref_primary_10_1021_ci000126f
source ACS Publications; MEDLINE
subjects Algorithms
Databases, Factual
Heterocyclic Compounds - chemistry
Heterocyclic Compounds - toxicity
Hydrocarbons, Aromatic - chemistry
Hydrocarbons, Aromatic - toxicity
Mutagens - chemistry
Mutagens - toxicity
Quantitative Structure-Activity Relationship
Quantum Theory
Salmonella typhimurium - drug effects
Salmonella typhimurium - genetics
title Prediction of Mutagenicity of Aromatic and Heteroaromatic Amines from Structure:  A Hierarchical QSAR Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Mutagenicity%20of%20Aromatic%20and%20Heteroaromatic%20Amines%20from%20Structure:%E2%80%89%20A%20Hierarchical%20QSAR%20Approach&rft.jtitle=Journal%20of%20Chemical%20Information%20and%20Computer%20Sciences&rft.au=Basak,%20Subhash%20C&rft.date=2001-05-01&rft.volume=41&rft.issue=3&rft.spage=671&rft.epage=678&rft.pages=671-678&rft.issn=0095-2338&rft.eissn=1549-960X&rft_id=info:doi/10.1021/ci000126f&rft_dat=%3Cistex_cross%3Eark_67375_TPS_K98MK2MB_S%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/11410045&rfr_iscdi=true