Crystal Growth and Morphology Control of OH1 Organic Electrooptic Crystals

We report on the growth of large-size phenolic configurationally locked polyene OH1 (2-(3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene)malononitrile) organic bulk crystals. OH1 has been recently identified as very promising for electro-optic and THz-wave applications, with several advantages c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal growth & design 2010-04, Vol.10 (4), p.1552-1558
Hauptverfasser: Kwon, Seong-Ji, Jazbinsek, Mojca, Kwon, O-Pil, Günter, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1558
container_issue 4
container_start_page 1552
container_title Crystal growth & design
container_volume 10
creator Kwon, Seong-Ji
Jazbinsek, Mojca
Kwon, O-Pil
Günter, Peter
description We report on the growth of large-size phenolic configurationally locked polyene OH1 (2-(3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene)malononitrile) organic bulk crystals. OH1 has been recently identified as very promising for electro-optic and THz-wave applications, with several advantages compared to the benchmark ionic salts such as DAST (4′-dimethylamino-N-methyl-4-stilbazolium tosylate) and DSTMS (4-N,N-dimethylamino-4′-N′-methyl-stilbazolium 2,4,6-trimethylbenzene sulfonate). We investigate the thermodynamic equilibrium conditions, the solubility, and the metastable zone of OH1/methanol system. The intermolecular hydrogen-bond interactions between the OH1 and methanol molecules impede the main supramolecular interactions between the OH1 molecules, which results in a strong delay in nucleation and provides a very large metastable-zone width. We furthermore studied the crystal morphology and the solvent effect by analyzing the relationship between the morphology and the molecular orientation at the crystal surface as well as the growth direction. The growth kinetics of specific OH1 crystal faces for different growth methods (slow evaporation or supercooling) has been studied. In the OH1/methanol system with a large metastable-zone width, we can grow large OH1 crystals and control their morphology. Thinner or thicker crystals of about 15 × 12 × 1 mm3 and 18 × 17 × 4 mm3, respectively, with good optical quality can be grown in roughly 2 weeks time.
doi_str_mv 10.1021/cg900882h
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cg900882h</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g94288494</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-569464b423aa8e09e0a49ca84d1d70d73245ad2883913383bca769c720cffb7a3</originalsourceid><addsrcrecordid>eNptkEtPwzAQhC0EEqVw4B_4woFDYP2K7SOKSgsq6gXO0dZ5tQpxZAeh_ntStZQLp9ldfTvSDCG3DB4YcPboagtgDG_OyIQpbhKtQJ3_ztKIS3IV4xYAdCrEhLxmYRcHbOk8-O-hodgV9M2HvvGtr3c0890QfEt9RVcLRlehxm7j6Kwt3Xj3_TAuR4d4TS6qUcqbo07Jx_PsPVsky9X8JXtaJiiUGhKVWpnKteQC0ZRgS0BpHRpZsEJDoQWXCgtujLBMCCPWDnVqnebgqmqtUUzJ_cHXBR9jKKu8D5tPDLucQb4vIT-VMLJ3B7bH6LCtAnZuE08PnKdCWqv_OHQx3_qv0I0J_vH7AXNwZ2o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Crystal Growth and Morphology Control of OH1 Organic Electrooptic Crystals</title><source>American Chemical Society Journals</source><creator>Kwon, Seong-Ji ; Jazbinsek, Mojca ; Kwon, O-Pil ; Günter, Peter</creator><creatorcontrib>Kwon, Seong-Ji ; Jazbinsek, Mojca ; Kwon, O-Pil ; Günter, Peter</creatorcontrib><description>We report on the growth of large-size phenolic configurationally locked polyene OH1 (2-(3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene)malononitrile) organic bulk crystals. OH1 has been recently identified as very promising for electro-optic and THz-wave applications, with several advantages compared to the benchmark ionic salts such as DAST (4′-dimethylamino-N-methyl-4-stilbazolium tosylate) and DSTMS (4-N,N-dimethylamino-4′-N′-methyl-stilbazolium 2,4,6-trimethylbenzene sulfonate). We investigate the thermodynamic equilibrium conditions, the solubility, and the metastable zone of OH1/methanol system. The intermolecular hydrogen-bond interactions between the OH1 and methanol molecules impede the main supramolecular interactions between the OH1 molecules, which results in a strong delay in nucleation and provides a very large metastable-zone width. We furthermore studied the crystal morphology and the solvent effect by analyzing the relationship between the morphology and the molecular orientation at the crystal surface as well as the growth direction. The growth kinetics of specific OH1 crystal faces for different growth methods (slow evaporation or supercooling) has been studied. In the OH1/methanol system with a large metastable-zone width, we can grow large OH1 crystals and control their morphology. Thinner or thicker crystals of about 15 × 12 × 1 mm3 and 18 × 17 × 4 mm3, respectively, with good optical quality can be grown in roughly 2 weeks time.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/cg900882h</identifier><language>eng</language><publisher>Washington,DC: American Chemical Society</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; General studies of phase transitions ; Materials science ; Methods of crystal growth; physics of crystal growth ; Nucleation ; Organic compounds ; Physics ; Solubility, segregation, and mixing; phase separation ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><ispartof>Crystal growth &amp; design, 2010-04, Vol.10 (4), p.1552-1558</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-569464b423aa8e09e0a49ca84d1d70d73245ad2883913383bca769c720cffb7a3</citedby><cites>FETCH-LOGICAL-a355t-569464b423aa8e09e0a49ca84d1d70d73245ad2883913383bca769c720cffb7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cg900882h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cg900882h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22634997$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwon, Seong-Ji</creatorcontrib><creatorcontrib>Jazbinsek, Mojca</creatorcontrib><creatorcontrib>Kwon, O-Pil</creatorcontrib><creatorcontrib>Günter, Peter</creatorcontrib><title>Crystal Growth and Morphology Control of OH1 Organic Electrooptic Crystals</title><title>Crystal growth &amp; design</title><addtitle>Cryst. Growth Des</addtitle><description>We report on the growth of large-size phenolic configurationally locked polyene OH1 (2-(3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene)malononitrile) organic bulk crystals. OH1 has been recently identified as very promising for electro-optic and THz-wave applications, with several advantages compared to the benchmark ionic salts such as DAST (4′-dimethylamino-N-methyl-4-stilbazolium tosylate) and DSTMS (4-N,N-dimethylamino-4′-N′-methyl-stilbazolium 2,4,6-trimethylbenzene sulfonate). We investigate the thermodynamic equilibrium conditions, the solubility, and the metastable zone of OH1/methanol system. The intermolecular hydrogen-bond interactions between the OH1 and methanol molecules impede the main supramolecular interactions between the OH1 molecules, which results in a strong delay in nucleation and provides a very large metastable-zone width. We furthermore studied the crystal morphology and the solvent effect by analyzing the relationship between the morphology and the molecular orientation at the crystal surface as well as the growth direction. The growth kinetics of specific OH1 crystal faces for different growth methods (slow evaporation or supercooling) has been studied. In the OH1/methanol system with a large metastable-zone width, we can grow large OH1 crystals and control their morphology. Thinner or thicker crystals of about 15 × 12 × 1 mm3 and 18 × 17 × 4 mm3, respectively, with good optical quality can be grown in roughly 2 weeks time.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>General studies of phase transitions</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Nucleation</subject><subject>Organic compounds</subject><subject>Physics</subject><subject>Solubility, segregation, and mixing; phase separation</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkEtPwzAQhC0EEqVw4B_4woFDYP2K7SOKSgsq6gXO0dZ5tQpxZAeh_ntStZQLp9ldfTvSDCG3DB4YcPboagtgDG_OyIQpbhKtQJ3_ztKIS3IV4xYAdCrEhLxmYRcHbOk8-O-hodgV9M2HvvGtr3c0890QfEt9RVcLRlehxm7j6Kwt3Xj3_TAuR4d4TS6qUcqbo07Jx_PsPVsky9X8JXtaJiiUGhKVWpnKteQC0ZRgS0BpHRpZsEJDoQWXCgtujLBMCCPWDnVqnebgqmqtUUzJ_cHXBR9jKKu8D5tPDLucQb4vIT-VMLJ3B7bH6LCtAnZuE08PnKdCWqv_OHQx3_qv0I0J_vH7AXNwZ2o</recordid><startdate>20100407</startdate><enddate>20100407</enddate><creator>Kwon, Seong-Ji</creator><creator>Jazbinsek, Mojca</creator><creator>Kwon, O-Pil</creator><creator>Günter, Peter</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100407</creationdate><title>Crystal Growth and Morphology Control of OH1 Organic Electrooptic Crystals</title><author>Kwon, Seong-Ji ; Jazbinsek, Mojca ; Kwon, O-Pil ; Günter, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-569464b423aa8e09e0a49ca84d1d70d73245ad2883913383bca769c720cffb7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>General studies of phase transitions</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Nucleation</topic><topic>Organic compounds</topic><topic>Physics</topic><topic>Solubility, segregation, and mixing; phase separation</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Seong-Ji</creatorcontrib><creatorcontrib>Jazbinsek, Mojca</creatorcontrib><creatorcontrib>Kwon, O-Pil</creatorcontrib><creatorcontrib>Günter, Peter</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Crystal growth &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Seong-Ji</au><au>Jazbinsek, Mojca</au><au>Kwon, O-Pil</au><au>Günter, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Growth and Morphology Control of OH1 Organic Electrooptic Crystals</atitle><jtitle>Crystal growth &amp; design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2010-04-07</date><risdate>2010</risdate><volume>10</volume><issue>4</issue><spage>1552</spage><epage>1558</epage><pages>1552-1558</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>We report on the growth of large-size phenolic configurationally locked polyene OH1 (2-(3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene)malononitrile) organic bulk crystals. OH1 has been recently identified as very promising for electro-optic and THz-wave applications, with several advantages compared to the benchmark ionic salts such as DAST (4′-dimethylamino-N-methyl-4-stilbazolium tosylate) and DSTMS (4-N,N-dimethylamino-4′-N′-methyl-stilbazolium 2,4,6-trimethylbenzene sulfonate). We investigate the thermodynamic equilibrium conditions, the solubility, and the metastable zone of OH1/methanol system. The intermolecular hydrogen-bond interactions between the OH1 and methanol molecules impede the main supramolecular interactions between the OH1 molecules, which results in a strong delay in nucleation and provides a very large metastable-zone width. We furthermore studied the crystal morphology and the solvent effect by analyzing the relationship between the morphology and the molecular orientation at the crystal surface as well as the growth direction. The growth kinetics of specific OH1 crystal faces for different growth methods (slow evaporation or supercooling) has been studied. In the OH1/methanol system with a large metastable-zone width, we can grow large OH1 crystals and control their morphology. Thinner or thicker crystals of about 15 × 12 × 1 mm3 and 18 × 17 × 4 mm3, respectively, with good optical quality can be grown in roughly 2 weeks time.</abstract><cop>Washington,DC</cop><pub>American Chemical Society</pub><doi>10.1021/cg900882h</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1528-7483
ispartof Crystal growth & design, 2010-04, Vol.10 (4), p.1552-1558
issn 1528-7483
1528-7505
language eng
recordid cdi_crossref_primary_10_1021_cg900882h
source American Chemical Society Journals
subjects Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
General studies of phase transitions
Materials science
Methods of crystal growth
physics of crystal growth
Nucleation
Organic compounds
Physics
Solubility, segregation, and mixing
phase separation
Structure of solids and liquids
crystallography
Structure of specific crystalline solids
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
title Crystal Growth and Morphology Control of OH1 Organic Electrooptic Crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Growth%20and%20Morphology%20Control%20of%20OH1%20Organic%20Electrooptic%20Crystals&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Kwon,%20Seong-Ji&rft.date=2010-04-07&rft.volume=10&rft.issue=4&rft.spage=1552&rft.epage=1558&rft.pages=1552-1558&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/cg900882h&rft_dat=%3Cacs_cross%3Eg94288494%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true