Hierarchically Porous ZnO Architectures for Gas Sensor Application

Hierarchically three-dimensional (3D) porous ZnO architectures were synthesized by a template-free, economical hydrothermal method combined with subsequent calcination. First, a precursor of hierarchical basic zinc carbonate (BZC) nanostructures self-assembled by sheet-like blocks was prepared. Then...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal growth & design 2009-08, Vol.9 (8), p.3532-3537
Hauptverfasser: Zhang, Jun, Wang, Shurong, Xu, Mijuan, Wang, Yan, Zhu, Baolin, Zhang, Shoumin, Huang, Weiping, Wu, Shihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3537
container_issue 8
container_start_page 3532
container_title Crystal growth & design
container_volume 9
creator Zhang, Jun
Wang, Shurong
Xu, Mijuan
Wang, Yan
Zhu, Baolin
Zhang, Shoumin
Huang, Weiping
Wu, Shihua
description Hierarchically three-dimensional (3D) porous ZnO architectures were synthesized by a template-free, economical hydrothermal method combined with subsequent calcination. First, a precursor of hierarchical basic zinc carbonate (BZC) nanostructures self-assembled by sheet-like blocks was prepared. Then calcination of the precursor produced hierarchically 3D porous ZnO architectures composed of interconnected ZnO nanosheets with high porosity resulting from the thermal decomposition of the precursor. The products were characterized by X-ray diffraction, Fourier tranform infrared spectroscopy, thermogravimetric−differential thermalgravimetric analysis, scanning electron microscopy, transmission electron microscopy, and Brunauer−Emmett−Teller N2 adsorption−desorption analyses. Control experiments with variations in solvent and reaction time respectively revealed that ethanol was responsible for the formation of the BZC precursor, and the self-assembly of BZC nanosheets into hierarchically 3D architectures was highly dependent on the reaction time. Gas sensing tests showed that these hierarchically porous ZnO architectures were highly promising for gas sensor applications, as the gas diffusion and mass transportation in sensing materials were significantly enhanced by their unique structures. Moreover, it is believed that this solution-based approach can be extended to fabricate other porous metal oxide materials with a unique morphology or shape.
doi_str_mv 10.1021/cg900269a
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cg900269a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a185199590</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-d702fe8f664167f33cb94cd34db492ba74e45ce4b469fbeaee7555fb7cdfb64d3</originalsourceid><addsrcrecordid>eNptjz1PwzAURS0EEqUw8A-8MDAE_O1kDBVtkSoVCVhYItt5hlQhjux06L8nVaEsTO_q6dwrHYSuKbmjhNF791EQwlRhTtCESpZnWhJ5-ptFzs_RRUobQohWnE_Qw7KBaKL7bJxp2x1-DjFsE37v1rjcfwdwwzZCwj5EvDAJv0CXxlj2fTtWhiZ0l-jMmzbB1c-dorf54-tsma3Wi6dZucoMl3LIak2Yh9wrJajSnnNnC-FqLmorCmaNFiCkA2GFKrwFA6CllN5qV3urRM2n6Paw62JIKYKv-th8mbirKKn28tVRfmRvDmxv0ijmo-lck44FxkiuCWd_nHGp2oRt7EaDf_a-AecaZjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hierarchically Porous ZnO Architectures for Gas Sensor Application</title><source>American Chemical Society Journals</source><creator>Zhang, Jun ; Wang, Shurong ; Xu, Mijuan ; Wang, Yan ; Zhu, Baolin ; Zhang, Shoumin ; Huang, Weiping ; Wu, Shihua</creator><creatorcontrib>Zhang, Jun ; Wang, Shurong ; Xu, Mijuan ; Wang, Yan ; Zhu, Baolin ; Zhang, Shoumin ; Huang, Weiping ; Wu, Shihua</creatorcontrib><description>Hierarchically three-dimensional (3D) porous ZnO architectures were synthesized by a template-free, economical hydrothermal method combined with subsequent calcination. First, a precursor of hierarchical basic zinc carbonate (BZC) nanostructures self-assembled by sheet-like blocks was prepared. Then calcination of the precursor produced hierarchically 3D porous ZnO architectures composed of interconnected ZnO nanosheets with high porosity resulting from the thermal decomposition of the precursor. The products were characterized by X-ray diffraction, Fourier tranform infrared spectroscopy, thermogravimetric−differential thermalgravimetric analysis, scanning electron microscopy, transmission electron microscopy, and Brunauer−Emmett−Teller N2 adsorption−desorption analyses. Control experiments with variations in solvent and reaction time respectively revealed that ethanol was responsible for the formation of the BZC precursor, and the self-assembly of BZC nanosheets into hierarchically 3D architectures was highly dependent on the reaction time. Gas sensing tests showed that these hierarchically porous ZnO architectures were highly promising for gas sensor applications, as the gas diffusion and mass transportation in sensing materials were significantly enhanced by their unique structures. Moreover, it is believed that this solution-based approach can be extended to fabricate other porous metal oxide materials with a unique morphology or shape.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/cg900269a</identifier><language>eng</language><publisher>Washington,DC: American Chemical Society</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Growth from solutions ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of nanofabrication ; Nanoscale materials and structures: fabrication and characterization ; Other topics in nanoscale materials and structures ; Physics ; Porous materials; granular materials ; Self-assembly ; Specific materials</subject><ispartof>Crystal growth &amp; design, 2009-08, Vol.9 (8), p.3532-3537</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-d702fe8f664167f33cb94cd34db492ba74e45ce4b469fbeaee7555fb7cdfb64d3</citedby><cites>FETCH-LOGICAL-a355t-d702fe8f664167f33cb94cd34db492ba74e45ce4b469fbeaee7555fb7cdfb64d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cg900269a$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cg900269a$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22087032$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Shurong</creatorcontrib><creatorcontrib>Xu, Mijuan</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zhu, Baolin</creatorcontrib><creatorcontrib>Zhang, Shoumin</creatorcontrib><creatorcontrib>Huang, Weiping</creatorcontrib><creatorcontrib>Wu, Shihua</creatorcontrib><title>Hierarchically Porous ZnO Architectures for Gas Sensor Application</title><title>Crystal growth &amp; design</title><addtitle>Cryst. Growth Des</addtitle><description>Hierarchically three-dimensional (3D) porous ZnO architectures were synthesized by a template-free, economical hydrothermal method combined with subsequent calcination. First, a precursor of hierarchical basic zinc carbonate (BZC) nanostructures self-assembled by sheet-like blocks was prepared. Then calcination of the precursor produced hierarchically 3D porous ZnO architectures composed of interconnected ZnO nanosheets with high porosity resulting from the thermal decomposition of the precursor. The products were characterized by X-ray diffraction, Fourier tranform infrared spectroscopy, thermogravimetric−differential thermalgravimetric analysis, scanning electron microscopy, transmission electron microscopy, and Brunauer−Emmett−Teller N2 adsorption−desorption analyses. Control experiments with variations in solvent and reaction time respectively revealed that ethanol was responsible for the formation of the BZC precursor, and the self-assembly of BZC nanosheets into hierarchically 3D architectures was highly dependent on the reaction time. Gas sensing tests showed that these hierarchically porous ZnO architectures were highly promising for gas sensor applications, as the gas diffusion and mass transportation in sensing materials were significantly enhanced by their unique structures. Moreover, it is believed that this solution-based approach can be extended to fabricate other porous metal oxide materials with a unique morphology or shape.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Growth from solutions</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of nanofabrication</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Porous materials; granular materials</subject><subject>Self-assembly</subject><subject>Specific materials</subject><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptjz1PwzAURS0EEqUw8A-8MDAE_O1kDBVtkSoVCVhYItt5hlQhjux06L8nVaEsTO_q6dwrHYSuKbmjhNF791EQwlRhTtCESpZnWhJ5-ptFzs_RRUobQohWnE_Qw7KBaKL7bJxp2x1-DjFsE37v1rjcfwdwwzZCwj5EvDAJv0CXxlj2fTtWhiZ0l-jMmzbB1c-dorf54-tsma3Wi6dZucoMl3LIak2Yh9wrJajSnnNnC-FqLmorCmaNFiCkA2GFKrwFA6CllN5qV3urRM2n6Paw62JIKYKv-th8mbirKKn28tVRfmRvDmxv0ijmo-lck44FxkiuCWd_nHGp2oRt7EaDf_a-AecaZjM</recordid><startdate>20090805</startdate><enddate>20090805</enddate><creator>Zhang, Jun</creator><creator>Wang, Shurong</creator><creator>Xu, Mijuan</creator><creator>Wang, Yan</creator><creator>Zhu, Baolin</creator><creator>Zhang, Shoumin</creator><creator>Huang, Weiping</creator><creator>Wu, Shihua</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090805</creationdate><title>Hierarchically Porous ZnO Architectures for Gas Sensor Application</title><author>Zhang, Jun ; Wang, Shurong ; Xu, Mijuan ; Wang, Yan ; Zhu, Baolin ; Zhang, Shoumin ; Huang, Weiping ; Wu, Shihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-d702fe8f664167f33cb94cd34db492ba74e45ce4b469fbeaee7555fb7cdfb64d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Growth from solutions</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of nanofabrication</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Porous materials; granular materials</topic><topic>Self-assembly</topic><topic>Specific materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Shurong</creatorcontrib><creatorcontrib>Xu, Mijuan</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Zhu, Baolin</creatorcontrib><creatorcontrib>Zhang, Shoumin</creatorcontrib><creatorcontrib>Huang, Weiping</creatorcontrib><creatorcontrib>Wu, Shihua</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Crystal growth &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jun</au><au>Wang, Shurong</au><au>Xu, Mijuan</au><au>Wang, Yan</au><au>Zhu, Baolin</au><au>Zhang, Shoumin</au><au>Huang, Weiping</au><au>Wu, Shihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchically Porous ZnO Architectures for Gas Sensor Application</atitle><jtitle>Crystal growth &amp; design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2009-08-05</date><risdate>2009</risdate><volume>9</volume><issue>8</issue><spage>3532</spage><epage>3537</epage><pages>3532-3537</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>Hierarchically three-dimensional (3D) porous ZnO architectures were synthesized by a template-free, economical hydrothermal method combined with subsequent calcination. First, a precursor of hierarchical basic zinc carbonate (BZC) nanostructures self-assembled by sheet-like blocks was prepared. Then calcination of the precursor produced hierarchically 3D porous ZnO architectures composed of interconnected ZnO nanosheets with high porosity resulting from the thermal decomposition of the precursor. The products were characterized by X-ray diffraction, Fourier tranform infrared spectroscopy, thermogravimetric−differential thermalgravimetric analysis, scanning electron microscopy, transmission electron microscopy, and Brunauer−Emmett−Teller N2 adsorption−desorption analyses. Control experiments with variations in solvent and reaction time respectively revealed that ethanol was responsible for the formation of the BZC precursor, and the self-assembly of BZC nanosheets into hierarchically 3D architectures was highly dependent on the reaction time. Gas sensing tests showed that these hierarchically porous ZnO architectures were highly promising for gas sensor applications, as the gas diffusion and mass transportation in sensing materials were significantly enhanced by their unique structures. Moreover, it is believed that this solution-based approach can be extended to fabricate other porous metal oxide materials with a unique morphology or shape.</abstract><cop>Washington,DC</cop><pub>American Chemical Society</pub><doi>10.1021/cg900269a</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1528-7483
ispartof Crystal growth & design, 2009-08, Vol.9 (8), p.3532-3537
issn 1528-7483
1528-7505
language eng
recordid cdi_crossref_primary_10_1021_cg900269a
source American Chemical Society Journals
subjects Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Growth from solutions
Materials science
Methods of crystal growth
physics of crystal growth
Methods of nanofabrication
Nanoscale materials and structures: fabrication and characterization
Other topics in nanoscale materials and structures
Physics
Porous materials
granular materials
Self-assembly
Specific materials
title Hierarchically Porous ZnO Architectures for Gas Sensor Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A51%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchically%20Porous%20ZnO%20Architectures%20for%20Gas%20Sensor%20Application&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Zhang,%20Jun&rft.date=2009-08-05&rft.volume=9&rft.issue=8&rft.spage=3532&rft.epage=3537&rft.pages=3532-3537&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/cg900269a&rft_dat=%3Cacs_cross%3Ea185199590%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true