Structural Variation in Mellitate Complexes of First-Row Transition Metals: What Chance for Design?
Eight compounds of Co, Ni, and Cu with mellitate ligands display a wide variety of structures with metal–mellitate coordination polymer dimensionality 0–3. Usually mellitate is fully deprotonated (mel6–), but there is one example of Hmel5– and one of H2mel4–. [M3(mel)(OH2)12]·6H2O (M = Co or Ni) ar...
Gespeichert in:
Veröffentlicht in: | Crystal growth & design 2014-12, Vol.14 (12), p.6282-6293 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6293 |
---|---|
container_issue | 12 |
container_start_page | 6282 |
container_title | Crystal growth & design |
container_volume | 14 |
creator | Clegg, William Holcroft, James M |
description | Eight compounds of Co, Ni, and Cu with mellitate ligands display a wide variety of structures with metal–mellitate coordination polymer dimensionality 0–3. Usually mellitate is fully deprotonated (mel6–), but there is one example of Hmel5– and one of H2mel4–. [M3(mel)(OH2)12]·6H2O (M = Co or Ni) are chain polymers with octahedral M, while [Cu7(OH2)19(OH)2(mel)2]·9H2O has a 2D polymer sheet structure with square-based pyramidal Cu. Addition of KOH produces different compounds. Two incorporate K+ in the structures: K+ 2(OH2)5[{Ni(OH2)5}2(mel)]2–·2H2O contains discrete nickel–mellitate anionic units, and K+ 2(OH2)6[{Cu(OH2)3}2(mel)]2–·H2O has a copper–mellitate two-dimensional (2D) polymeric anion. For Co the product is [Co(OH2)6]2+[{Co(OH2)4}5(mel)2]2–·4H2O, with a 2D polymeric anion and discrete cations. A gel-supported synthesis leads to [Cu3(OH2)10(Hmel)][Cu2(OH2)6(Hmel)]·7H2O, with two different copper–mellitate polymeric sheets arranged alternately in a stack. [{Cu(OH2)(EtOH)(4,4′-bipy)}2(H2mel)] contains a three-dimensional copper–mellitate network with hexagonal channels, occupied by 4,4′-bipyridyl molecules coordinated to Cu at one end and hydrogen bonded to H2mel4– at the other. While some of these features are familiar from other structures, some are new, raising the question of how far design principles can be applied to the synthesis of mellitate complexes. |
doi_str_mv | 10.1021/cg5009736 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cg5009736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b195419277</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-5ee0c5155e9e11475e9ec64ebfc026ebd23a91fde0eebfebfd9fa50263dcf9c83</originalsourceid><addsrcrecordid>eNptUMFKAzEUDKJgrR78g1w8eFhNNs3uxovIalWoCFr1uLxmX9qU7W5JUtS_N7VaL8KDebyZNzBDyDFnZ5yl_FxPJWMqF9kO6XGZFkkumdz93QeF2CcH3s8ZY3kmRI_o5-BWOqwcNPQVnIVgu5balj5g09gAAWnZLZYNfqCnnaFD63xInrp3OnbQevstf8AAjb-gbzMItJxBq5GaztFr9HbaXh6SPRN5PPrBPnkZ3ozLu2T0eHtfXo0SEIqFRCIyLbmUqJDzQb5GnQ1wYjRLM5zUqQDFTY0M4y1OrQzISIlaG6UL0SenG1_tOu8dmmrp7ALcZ8VZtW6n2rYTtScb7RK8hsbEMNr67UOqmBCqyP90oH0171aujQn-8fsCvsRx5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural Variation in Mellitate Complexes of First-Row Transition Metals: What Chance for Design?</title><source>ACS Publications</source><creator>Clegg, William ; Holcroft, James M</creator><creatorcontrib>Clegg, William ; Holcroft, James M</creatorcontrib><description>Eight compounds of Co, Ni, and Cu with mellitate ligands display a wide variety of structures with metal–mellitate coordination polymer dimensionality 0–3. Usually mellitate is fully deprotonated (mel6–), but there is one example of Hmel5– and one of H2mel4–. [M3(mel)(OH2)12]·6H2O (M = Co or Ni) are chain polymers with octahedral M, while [Cu7(OH2)19(OH)2(mel)2]·9H2O has a 2D polymer sheet structure with square-based pyramidal Cu. Addition of KOH produces different compounds. Two incorporate K+ in the structures: K+ 2(OH2)5[{Ni(OH2)5}2(mel)]2–·2H2O contains discrete nickel–mellitate anionic units, and K+ 2(OH2)6[{Cu(OH2)3}2(mel)]2–·H2O has a copper–mellitate two-dimensional (2D) polymeric anion. For Co the product is [Co(OH2)6]2+[{Co(OH2)4}5(mel)2]2–·4H2O, with a 2D polymeric anion and discrete cations. A gel-supported synthesis leads to [Cu3(OH2)10(Hmel)][Cu2(OH2)6(Hmel)]·7H2O, with two different copper–mellitate polymeric sheets arranged alternately in a stack. [{Cu(OH2)(EtOH)(4,4′-bipy)}2(H2mel)] contains a three-dimensional copper–mellitate network with hexagonal channels, occupied by 4,4′-bipyridyl molecules coordinated to Cu at one end and hydrogen bonded to H2mel4– at the other. While some of these features are familiar from other structures, some are new, raising the question of how far design principles can be applied to the synthesis of mellitate complexes.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/cg5009736</identifier><language>eng</language><publisher>Washington,DC: American Chemical Society</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Physics ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids</subject><ispartof>Crystal growth & design, 2014-12, Vol.14 (12), p.6282-6293</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-5ee0c5155e9e11475e9ec64ebfc026ebd23a91fde0eebfebfd9fa50263dcf9c83</citedby><cites>FETCH-LOGICAL-a390t-5ee0c5155e9e11475e9ec64ebfc026ebd23a91fde0eebfebfd9fa50263dcf9c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cg5009736$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cg5009736$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29033987$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Clegg, William</creatorcontrib><creatorcontrib>Holcroft, James M</creatorcontrib><title>Structural Variation in Mellitate Complexes of First-Row Transition Metals: What Chance for Design?</title><title>Crystal growth & design</title><addtitle>Cryst. Growth Des</addtitle><description>Eight compounds of Co, Ni, and Cu with mellitate ligands display a wide variety of structures with metal–mellitate coordination polymer dimensionality 0–3. Usually mellitate is fully deprotonated (mel6–), but there is one example of Hmel5– and one of H2mel4–. [M3(mel)(OH2)12]·6H2O (M = Co or Ni) are chain polymers with octahedral M, while [Cu7(OH2)19(OH)2(mel)2]·9H2O has a 2D polymer sheet structure with square-based pyramidal Cu. Addition of KOH produces different compounds. Two incorporate K+ in the structures: K+ 2(OH2)5[{Ni(OH2)5}2(mel)]2–·2H2O contains discrete nickel–mellitate anionic units, and K+ 2(OH2)6[{Cu(OH2)3}2(mel)]2–·H2O has a copper–mellitate two-dimensional (2D) polymeric anion. For Co the product is [Co(OH2)6]2+[{Co(OH2)4}5(mel)2]2–·4H2O, with a 2D polymeric anion and discrete cations. A gel-supported synthesis leads to [Cu3(OH2)10(Hmel)][Cu2(OH2)6(Hmel)]·7H2O, with two different copper–mellitate polymeric sheets arranged alternately in a stack. [{Cu(OH2)(EtOH)(4,4′-bipy)}2(H2mel)] contains a three-dimensional copper–mellitate network with hexagonal channels, occupied by 4,4′-bipyridyl molecules coordinated to Cu at one end and hydrogen bonded to H2mel4– at the other. While some of these features are familiar from other structures, some are new, raising the question of how far design principles can be applied to the synthesis of mellitate complexes.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptUMFKAzEUDKJgrR78g1w8eFhNNs3uxovIalWoCFr1uLxmX9qU7W5JUtS_N7VaL8KDebyZNzBDyDFnZ5yl_FxPJWMqF9kO6XGZFkkumdz93QeF2CcH3s8ZY3kmRI_o5-BWOqwcNPQVnIVgu5balj5g09gAAWnZLZYNfqCnnaFD63xInrp3OnbQevstf8AAjb-gbzMItJxBq5GaztFr9HbaXh6SPRN5PPrBPnkZ3ozLu2T0eHtfXo0SEIqFRCIyLbmUqJDzQb5GnQ1wYjRLM5zUqQDFTY0M4y1OrQzISIlaG6UL0SenG1_tOu8dmmrp7ALcZ8VZtW6n2rYTtScb7RK8hsbEMNr67UOqmBCqyP90oH0171aujQn-8fsCvsRx5g</recordid><startdate>20141203</startdate><enddate>20141203</enddate><creator>Clegg, William</creator><creator>Holcroft, James M</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141203</creationdate><title>Structural Variation in Mellitate Complexes of First-Row Transition Metals: What Chance for Design?</title><author>Clegg, William ; Holcroft, James M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-5ee0c5155e9e11475e9ec64ebfc026ebd23a91fde0eebfebfd9fa50263dcf9c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clegg, William</creatorcontrib><creatorcontrib>Holcroft, James M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Crystal growth & design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clegg, William</au><au>Holcroft, James M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Variation in Mellitate Complexes of First-Row Transition Metals: What Chance for Design?</atitle><jtitle>Crystal growth & design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2014-12-03</date><risdate>2014</risdate><volume>14</volume><issue>12</issue><spage>6282</spage><epage>6293</epage><pages>6282-6293</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>Eight compounds of Co, Ni, and Cu with mellitate ligands display a wide variety of structures with metal–mellitate coordination polymer dimensionality 0–3. Usually mellitate is fully deprotonated (mel6–), but there is one example of Hmel5– and one of H2mel4–. [M3(mel)(OH2)12]·6H2O (M = Co or Ni) are chain polymers with octahedral M, while [Cu7(OH2)19(OH)2(mel)2]·9H2O has a 2D polymer sheet structure with square-based pyramidal Cu. Addition of KOH produces different compounds. Two incorporate K+ in the structures: K+ 2(OH2)5[{Ni(OH2)5}2(mel)]2–·2H2O contains discrete nickel–mellitate anionic units, and K+ 2(OH2)6[{Cu(OH2)3}2(mel)]2–·H2O has a copper–mellitate two-dimensional (2D) polymeric anion. For Co the product is [Co(OH2)6]2+[{Co(OH2)4}5(mel)2]2–·4H2O, with a 2D polymeric anion and discrete cations. A gel-supported synthesis leads to [Cu3(OH2)10(Hmel)][Cu2(OH2)6(Hmel)]·7H2O, with two different copper–mellitate polymeric sheets arranged alternately in a stack. [{Cu(OH2)(EtOH)(4,4′-bipy)}2(H2mel)] contains a three-dimensional copper–mellitate network with hexagonal channels, occupied by 4,4′-bipyridyl molecules coordinated to Cu at one end and hydrogen bonded to H2mel4– at the other. While some of these features are familiar from other structures, some are new, raising the question of how far design principles can be applied to the synthesis of mellitate complexes.</abstract><cop>Washington,DC</cop><pub>American Chemical Society</pub><doi>10.1021/cg5009736</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1528-7483 |
ispartof | Crystal growth & design, 2014-12, Vol.14 (12), p.6282-6293 |
issn | 1528-7483 1528-7505 |
language | eng |
recordid | cdi_crossref_primary_10_1021_cg5009736 |
source | ACS Publications |
subjects | Condensed matter: structure, mechanical and thermal properties Exact sciences and technology Physics Structure of solids and liquids crystallography Structure of specific crystalline solids |
title | Structural Variation in Mellitate Complexes of First-Row Transition Metals: What Chance for Design? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Variation%20in%20Mellitate%20Complexes%20of%20First-Row%20Transition%20Metals:%20What%20Chance%20for%20Design?&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Clegg,%20William&rft.date=2014-12-03&rft.volume=14&rft.issue=12&rft.spage=6282&rft.epage=6293&rft.pages=6282-6293&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/cg5009736&rft_dat=%3Cacs_cross%3Eb195419277%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |