Structural Variation in Mellitate Complexes of First-Row Transition Metals: What Chance for Design?

Eight compounds of Co, Ni, and Cu with mellitate ligands display a wide variety of structures with metal–mellitate coordination polymer dimensionality 0–3. Usually mellitate is fully deprotonated (mel6–), but there is one example of Hmel5– and one of H2mel4–. [M3(mel)(OH2)12]­·6H2O (M = Co or Ni) ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal growth & design 2014-12, Vol.14 (12), p.6282-6293
Hauptverfasser: Clegg, William, Holcroft, James M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6293
container_issue 12
container_start_page 6282
container_title Crystal growth & design
container_volume 14
creator Clegg, William
Holcroft, James M
description Eight compounds of Co, Ni, and Cu with mellitate ligands display a wide variety of structures with metal–mellitate coordination polymer dimensionality 0–3. Usually mellitate is fully deprotonated (mel6–), but there is one example of Hmel5– and one of H2mel4–. [M3(mel)(OH2)12]­·6H2O (M = Co or Ni) are chain polymers with octahedral M, while [Cu7(OH2)19­(OH)2(mel)2]­·9H2O has a 2D polymer sheet structure with square-based pyramidal Cu. Addition of KOH produces different compounds. Two incorporate K+ in the structures: K+ 2(OH2)5­[{Ni(OH2)5}2­(mel)]2–­·2H2O contains discrete nickel–mellitate anionic units, and K+ 2(OH2)6­[{Cu(OH2)3}2­(mel)]2–­·H2O has a copper–mellitate two-dimensional (2D) polymeric anion. For Co the product is [Co(OH2)6]2+­[{Co(OH2)4}5­(mel)2]2–·4H2O, with a 2D polymeric anion and discrete cations. A gel-supported synthesis leads to [Cu3(OH2)10­(Hmel)]­[Cu2(OH2)6(Hmel)]­·7H2O, with two different copper–mellitate polymeric sheets arranged alternately in a stack. [{Cu(OH2)­(EtOH)­(4,4′-bipy)}2­(H2mel)] contains a three-dimensional copper–mellitate network with hexagonal channels, occupied by 4,4′-bipyridyl molecules coordinated to Cu at one end and hydrogen bonded to H2mel4– at the other. While some of these features are familiar from other structures, some are new, raising the question of how far design principles can be applied to the synthesis of mellitate complexes.
doi_str_mv 10.1021/cg5009736
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cg5009736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b195419277</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-5ee0c5155e9e11475e9ec64ebfc026ebd23a91fde0eebfebfd9fa50263dcf9c83</originalsourceid><addsrcrecordid>eNptUMFKAzEUDKJgrR78g1w8eFhNNs3uxovIalWoCFr1uLxmX9qU7W5JUtS_N7VaL8KDebyZNzBDyDFnZ5yl_FxPJWMqF9kO6XGZFkkumdz93QeF2CcH3s8ZY3kmRI_o5-BWOqwcNPQVnIVgu5balj5g09gAAWnZLZYNfqCnnaFD63xInrp3OnbQevstf8AAjb-gbzMItJxBq5GaztFr9HbaXh6SPRN5PPrBPnkZ3ozLu2T0eHtfXo0SEIqFRCIyLbmUqJDzQb5GnQ1wYjRLM5zUqQDFTY0M4y1OrQzISIlaG6UL0SenG1_tOu8dmmrp7ALcZ8VZtW6n2rYTtScb7RK8hsbEMNr67UOqmBCqyP90oH0171aujQn-8fsCvsRx5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural Variation in Mellitate Complexes of First-Row Transition Metals: What Chance for Design?</title><source>ACS Publications</source><creator>Clegg, William ; Holcroft, James M</creator><creatorcontrib>Clegg, William ; Holcroft, James M</creatorcontrib><description>Eight compounds of Co, Ni, and Cu with mellitate ligands display a wide variety of structures with metal–mellitate coordination polymer dimensionality 0–3. Usually mellitate is fully deprotonated (mel6–), but there is one example of Hmel5– and one of H2mel4–. [M3(mel)(OH2)12]­·6H2O (M = Co or Ni) are chain polymers with octahedral M, while [Cu7(OH2)19­(OH)2(mel)2]­·9H2O has a 2D polymer sheet structure with square-based pyramidal Cu. Addition of KOH produces different compounds. Two incorporate K+ in the structures: K+ 2(OH2)5­[{Ni(OH2)5}2­(mel)]2–­·2H2O contains discrete nickel–mellitate anionic units, and K+ 2(OH2)6­[{Cu(OH2)3}2­(mel)]2–­·H2O has a copper–mellitate two-dimensional (2D) polymeric anion. For Co the product is [Co(OH2)6]2+­[{Co(OH2)4}5­(mel)2]2–·4H2O, with a 2D polymeric anion and discrete cations. A gel-supported synthesis leads to [Cu3(OH2)10­(Hmel)]­[Cu2(OH2)6(Hmel)]­·7H2O, with two different copper–mellitate polymeric sheets arranged alternately in a stack. [{Cu(OH2)­(EtOH)­(4,4′-bipy)}2­(H2mel)] contains a three-dimensional copper–mellitate network with hexagonal channels, occupied by 4,4′-bipyridyl molecules coordinated to Cu at one end and hydrogen bonded to H2mel4– at the other. While some of these features are familiar from other structures, some are new, raising the question of how far design principles can be applied to the synthesis of mellitate complexes.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/cg5009736</identifier><language>eng</language><publisher>Washington,DC: American Chemical Society</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Physics ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids</subject><ispartof>Crystal growth &amp; design, 2014-12, Vol.14 (12), p.6282-6293</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-5ee0c5155e9e11475e9ec64ebfc026ebd23a91fde0eebfebfd9fa50263dcf9c83</citedby><cites>FETCH-LOGICAL-a390t-5ee0c5155e9e11475e9ec64ebfc026ebd23a91fde0eebfebfd9fa50263dcf9c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cg5009736$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cg5009736$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29033987$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Clegg, William</creatorcontrib><creatorcontrib>Holcroft, James M</creatorcontrib><title>Structural Variation in Mellitate Complexes of First-Row Transition Metals: What Chance for Design?</title><title>Crystal growth &amp; design</title><addtitle>Cryst. Growth Des</addtitle><description>Eight compounds of Co, Ni, and Cu with mellitate ligands display a wide variety of structures with metal–mellitate coordination polymer dimensionality 0–3. Usually mellitate is fully deprotonated (mel6–), but there is one example of Hmel5– and one of H2mel4–. [M3(mel)(OH2)12]­·6H2O (M = Co or Ni) are chain polymers with octahedral M, while [Cu7(OH2)19­(OH)2(mel)2]­·9H2O has a 2D polymer sheet structure with square-based pyramidal Cu. Addition of KOH produces different compounds. Two incorporate K+ in the structures: K+ 2(OH2)5­[{Ni(OH2)5}2­(mel)]2–­·2H2O contains discrete nickel–mellitate anionic units, and K+ 2(OH2)6­[{Cu(OH2)3}2­(mel)]2–­·H2O has a copper–mellitate two-dimensional (2D) polymeric anion. For Co the product is [Co(OH2)6]2+­[{Co(OH2)4}5­(mel)2]2–·4H2O, with a 2D polymeric anion and discrete cations. A gel-supported synthesis leads to [Cu3(OH2)10­(Hmel)]­[Cu2(OH2)6(Hmel)]­·7H2O, with two different copper–mellitate polymeric sheets arranged alternately in a stack. [{Cu(OH2)­(EtOH)­(4,4′-bipy)}2­(H2mel)] contains a three-dimensional copper–mellitate network with hexagonal channels, occupied by 4,4′-bipyridyl molecules coordinated to Cu at one end and hydrogen bonded to H2mel4– at the other. While some of these features are familiar from other structures, some are new, raising the question of how far design principles can be applied to the synthesis of mellitate complexes.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptUMFKAzEUDKJgrR78g1w8eFhNNs3uxovIalWoCFr1uLxmX9qU7W5JUtS_N7VaL8KDebyZNzBDyDFnZ5yl_FxPJWMqF9kO6XGZFkkumdz93QeF2CcH3s8ZY3kmRI_o5-BWOqwcNPQVnIVgu5balj5g09gAAWnZLZYNfqCnnaFD63xInrp3OnbQevstf8AAjb-gbzMItJxBq5GaztFr9HbaXh6SPRN5PPrBPnkZ3ozLu2T0eHtfXo0SEIqFRCIyLbmUqJDzQb5GnQ1wYjRLM5zUqQDFTY0M4y1OrQzISIlaG6UL0SenG1_tOu8dmmrp7ALcZ8VZtW6n2rYTtScb7RK8hsbEMNr67UOqmBCqyP90oH0171aujQn-8fsCvsRx5g</recordid><startdate>20141203</startdate><enddate>20141203</enddate><creator>Clegg, William</creator><creator>Holcroft, James M</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141203</creationdate><title>Structural Variation in Mellitate Complexes of First-Row Transition Metals: What Chance for Design?</title><author>Clegg, William ; Holcroft, James M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-5ee0c5155e9e11475e9ec64ebfc026ebd23a91fde0eebfebfd9fa50263dcf9c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clegg, William</creatorcontrib><creatorcontrib>Holcroft, James M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Crystal growth &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clegg, William</au><au>Holcroft, James M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Variation in Mellitate Complexes of First-Row Transition Metals: What Chance for Design?</atitle><jtitle>Crystal growth &amp; design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2014-12-03</date><risdate>2014</risdate><volume>14</volume><issue>12</issue><spage>6282</spage><epage>6293</epage><pages>6282-6293</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>Eight compounds of Co, Ni, and Cu with mellitate ligands display a wide variety of structures with metal–mellitate coordination polymer dimensionality 0–3. Usually mellitate is fully deprotonated (mel6–), but there is one example of Hmel5– and one of H2mel4–. [M3(mel)(OH2)12]­·6H2O (M = Co or Ni) are chain polymers with octahedral M, while [Cu7(OH2)19­(OH)2(mel)2]­·9H2O has a 2D polymer sheet structure with square-based pyramidal Cu. Addition of KOH produces different compounds. Two incorporate K+ in the structures: K+ 2(OH2)5­[{Ni(OH2)5}2­(mel)]2–­·2H2O contains discrete nickel–mellitate anionic units, and K+ 2(OH2)6­[{Cu(OH2)3}2­(mel)]2–­·H2O has a copper–mellitate two-dimensional (2D) polymeric anion. For Co the product is [Co(OH2)6]2+­[{Co(OH2)4}5­(mel)2]2–·4H2O, with a 2D polymeric anion and discrete cations. A gel-supported synthesis leads to [Cu3(OH2)10­(Hmel)]­[Cu2(OH2)6(Hmel)]­·7H2O, with two different copper–mellitate polymeric sheets arranged alternately in a stack. [{Cu(OH2)­(EtOH)­(4,4′-bipy)}2­(H2mel)] contains a three-dimensional copper–mellitate network with hexagonal channels, occupied by 4,4′-bipyridyl molecules coordinated to Cu at one end and hydrogen bonded to H2mel4– at the other. While some of these features are familiar from other structures, some are new, raising the question of how far design principles can be applied to the synthesis of mellitate complexes.</abstract><cop>Washington,DC</cop><pub>American Chemical Society</pub><doi>10.1021/cg5009736</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1528-7483
ispartof Crystal growth & design, 2014-12, Vol.14 (12), p.6282-6293
issn 1528-7483
1528-7505
language eng
recordid cdi_crossref_primary_10_1021_cg5009736
source ACS Publications
subjects Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
Physics
Structure of solids and liquids
crystallography
Structure of specific crystalline solids
title Structural Variation in Mellitate Complexes of First-Row Transition Metals: What Chance for Design?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Variation%20in%20Mellitate%20Complexes%20of%20First-Row%20Transition%20Metals:%20What%20Chance%20for%20Design?&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Clegg,%20William&rft.date=2014-12-03&rft.volume=14&rft.issue=12&rft.spage=6282&rft.epage=6293&rft.pages=6282-6293&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/cg5009736&rft_dat=%3Cacs_cross%3Eb195419277%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true