Three-Dimensional Modeling of Basal Plane Dislocations in 4H-SiC Single Crystals Grown by the Physical Vapor Transport Method

To effectively reduce basal plane dislocations (BPDs) during SiC physical vapor transport growth, a three-dimensional model for tracking the multiplication of BPDs has been developed. The distribution of BPDs inside global crystals has been shown. The effects of the convexity of the growth surface a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal growth & design 2014-03, Vol.14 (3), p.1272-1278
Hauptverfasser: Gao, Bing, Kakimoto, Koichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1278
container_issue 3
container_start_page 1272
container_title Crystal growth & design
container_volume 14
creator Gao, Bing
Kakimoto, Koichi
description To effectively reduce basal plane dislocations (BPDs) during SiC physical vapor transport growth, a three-dimensional model for tracking the multiplication of BPDs has been developed. The distribution of BPDs inside global crystals has been shown. The effects of the convexity of the growth surface and the cooling rate have been analyzed. The results show that the convexity of the growth surface is unfavorable and can cause a large multiplication of BPDs when the crystal grows. Fast cooling during the cooling process is beneficial for the reduction of BPDs because fast cooling can result in a smaller radial flux at the high-temperature region. In addition, fast cooling can reduce the generation of stacking faults during the cooling process. Therefore, to reduce BPDs and stacking faults, it is better to maintain or reduce the convexity of the growth surface and increase the cooling rate during the cooling process.
doi_str_mv 10.1021/cg401789g
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cg401789g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>i90312381</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-722e225b62b9b7301e8f0884fe044785bd9836dc27affeec19b64bc2c1a97b23</originalsourceid><addsrcrecordid>eNptkDFPwzAQhS0EEqUw8A-8MDAEbCeOnRFaaJFaUakRa2Q7duMqjSs7CGXgv2NUKAvTnU7fe_f0ALjG6A4jgu_VJkOY8WJzAkaYEp4wiujp757x9BxchLBFCLE8TUfgs2y81snU7nQXrOtEC5eu1q3tNtAZ-ChCvKxa0Wk4taF1SvSRCtB2MJsnazuB64i2Gk78EHrRBjjz7qODcoB9o-GqGYJV0eJN7J2HpRddiEsPl7pvXH0JzkzU6KufOQbl81M5mSeL19nL5GGRiJTSPmGEaEKozIksJEsR1twgzjOjUZYxTmVd8DSvFWHCGK0VLmSeSUUUFgWTJB2D24Ot8i4Er02193Yn_FBhVH3XVh1ri-zNgd2LEIObmFjZcBSQ-IjQLP_jhArV1r37WF34x-8LmQ55lQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Three-Dimensional Modeling of Basal Plane Dislocations in 4H-SiC Single Crystals Grown by the Physical Vapor Transport Method</title><source>ACS Publications</source><creator>Gao, Bing ; Kakimoto, Koichi</creator><creatorcontrib>Gao, Bing ; Kakimoto, Koichi</creatorcontrib><description>To effectively reduce basal plane dislocations (BPDs) during SiC physical vapor transport growth, a three-dimensional model for tracking the multiplication of BPDs has been developed. The distribution of BPDs inside global crystals has been shown. The effects of the convexity of the growth surface and the cooling rate have been analyzed. The results show that the convexity of the growth surface is unfavorable and can cause a large multiplication of BPDs when the crystal grows. Fast cooling during the cooling process is beneficial for the reduction of BPDs because fast cooling can result in a smaller radial flux at the high-temperature region. In addition, fast cooling can reduce the generation of stacking faults during the cooling process. Therefore, to reduce BPDs and stacking faults, it is better to maintain or reduce the convexity of the growth surface and increase the cooling rate during the cooling process.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/cg401789g</identifier><language>eng</language><publisher>Washington,DC: American Chemical Society</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Defects and impurities in crystals; microstructure ; Deposition by sputtering ; Exact sciences and technology ; Linear defects: dislocations, disclinations ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Physics ; Stacking faults and other planar or extended defects ; Structure of solids and liquids; crystallography ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><ispartof>Crystal growth &amp; design, 2014-03, Vol.14 (3), p.1272-1278</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-722e225b62b9b7301e8f0884fe044785bd9836dc27affeec19b64bc2c1a97b23</citedby><cites>FETCH-LOGICAL-a355t-722e225b62b9b7301e8f0884fe044785bd9836dc27affeec19b64bc2c1a97b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cg401789g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cg401789g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28362546$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Bing</creatorcontrib><creatorcontrib>Kakimoto, Koichi</creatorcontrib><title>Three-Dimensional Modeling of Basal Plane Dislocations in 4H-SiC Single Crystals Grown by the Physical Vapor Transport Method</title><title>Crystal growth &amp; design</title><addtitle>Cryst. Growth Des</addtitle><description>To effectively reduce basal plane dislocations (BPDs) during SiC physical vapor transport growth, a three-dimensional model for tracking the multiplication of BPDs has been developed. The distribution of BPDs inside global crystals has been shown. The effects of the convexity of the growth surface and the cooling rate have been analyzed. The results show that the convexity of the growth surface is unfavorable and can cause a large multiplication of BPDs when the crystal grows. Fast cooling during the cooling process is beneficial for the reduction of BPDs because fast cooling can result in a smaller radial flux at the high-temperature region. In addition, fast cooling can reduce the generation of stacking faults during the cooling process. Therefore, to reduce BPDs and stacking faults, it is better to maintain or reduce the convexity of the growth surface and increase the cooling rate during the cooling process.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Deposition by sputtering</subject><subject>Exact sciences and technology</subject><subject>Linear defects: dislocations, disclinations</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Physics</subject><subject>Stacking faults and other planar or extended defects</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkDFPwzAQhS0EEqUw8A-8MDAEbCeOnRFaaJFaUakRa2Q7duMqjSs7CGXgv2NUKAvTnU7fe_f0ALjG6A4jgu_VJkOY8WJzAkaYEp4wiujp757x9BxchLBFCLE8TUfgs2y81snU7nQXrOtEC5eu1q3tNtAZ-ChCvKxa0Wk4taF1SvSRCtB2MJsnazuB64i2Gk78EHrRBjjz7qODcoB9o-GqGYJV0eJN7J2HpRddiEsPl7pvXH0JzkzU6KufOQbl81M5mSeL19nL5GGRiJTSPmGEaEKozIksJEsR1twgzjOjUZYxTmVd8DSvFWHCGK0VLmSeSUUUFgWTJB2D24Ot8i4Er02193Yn_FBhVH3XVh1ri-zNgd2LEIObmFjZcBSQ-IjQLP_jhArV1r37WF34x-8LmQ55lQ</recordid><startdate>20140305</startdate><enddate>20140305</enddate><creator>Gao, Bing</creator><creator>Kakimoto, Koichi</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140305</creationdate><title>Three-Dimensional Modeling of Basal Plane Dislocations in 4H-SiC Single Crystals Grown by the Physical Vapor Transport Method</title><author>Gao, Bing ; Kakimoto, Koichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-722e225b62b9b7301e8f0884fe044785bd9836dc27affeec19b64bc2c1a97b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Deposition by sputtering</topic><topic>Exact sciences and technology</topic><topic>Linear defects: dislocations, disclinations</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Physics</topic><topic>Stacking faults and other planar or extended defects</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Bing</creatorcontrib><creatorcontrib>Kakimoto, Koichi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Crystal growth &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Bing</au><au>Kakimoto, Koichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Modeling of Basal Plane Dislocations in 4H-SiC Single Crystals Grown by the Physical Vapor Transport Method</atitle><jtitle>Crystal growth &amp; design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2014-03-05</date><risdate>2014</risdate><volume>14</volume><issue>3</issue><spage>1272</spage><epage>1278</epage><pages>1272-1278</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>To effectively reduce basal plane dislocations (BPDs) during SiC physical vapor transport growth, a three-dimensional model for tracking the multiplication of BPDs has been developed. The distribution of BPDs inside global crystals has been shown. The effects of the convexity of the growth surface and the cooling rate have been analyzed. The results show that the convexity of the growth surface is unfavorable and can cause a large multiplication of BPDs when the crystal grows. Fast cooling during the cooling process is beneficial for the reduction of BPDs because fast cooling can result in a smaller radial flux at the high-temperature region. In addition, fast cooling can reduce the generation of stacking faults during the cooling process. Therefore, to reduce BPDs and stacking faults, it is better to maintain or reduce the convexity of the growth surface and increase the cooling rate during the cooling process.</abstract><cop>Washington,DC</cop><pub>American Chemical Society</pub><doi>10.1021/cg401789g</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1528-7483
ispartof Crystal growth & design, 2014-03, Vol.14 (3), p.1272-1278
issn 1528-7483
1528-7505
language eng
recordid cdi_crossref_primary_10_1021_cg401789g
source ACS Publications
subjects Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Defects and impurities in crystals
microstructure
Deposition by sputtering
Exact sciences and technology
Linear defects: dislocations, disclinations
Materials science
Methods of crystal growth
physics of crystal growth
Methods of deposition of films and coatings
film growth and epitaxy
Physics
Stacking faults and other planar or extended defects
Structure of solids and liquids
crystallography
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
title Three-Dimensional Modeling of Basal Plane Dislocations in 4H-SiC Single Crystals Grown by the Physical Vapor Transport Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Modeling%20of%20Basal%20Plane%20Dislocations%20in%204H-SiC%20Single%20Crystals%20Grown%20by%20the%20Physical%20Vapor%20Transport%20Method&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Gao,%20Bing&rft.date=2014-03-05&rft.volume=14&rft.issue=3&rft.spage=1272&rft.epage=1278&rft.pages=1272-1278&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/cg401789g&rft_dat=%3Cacs_cross%3Ei90312381%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true