Hoogsteen–Watson–Crick 9‑Methyladenine:1-Methylthymine Complex: Charge Density Study in the Context of Crystal Engineering and Nucleic Acid Base Pairing

This study provides a detailed charge density distribution analysis supported by comprehensive energetic investigations. The nature of the intermolecular interactions existing in the 9-methyladenine:1-methylthymine cocrystal structure with respect to those specific for the corresponding monocomponen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal growth & design 2013-01, Vol.13 (1), p.239-254
Hauptverfasser: Jarzembska, Katarzyna N, Goral, Anna M, Gajda, Roman, Dominiak, Paulina M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue 1
container_start_page 239
container_title Crystal growth & design
container_volume 13
creator Jarzembska, Katarzyna N
Goral, Anna M
Gajda, Roman
Dominiak, Paulina M
description This study provides a detailed charge density distribution analysis supported by comprehensive energetic investigations. The nature of the intermolecular interactions existing in the 9-methyladenine:1-methylthymine cocrystal structure with respect to those specific for the corresponding monocomponent crystals is explored. Charge density topological investigations lead to reliable hydrogen-bond interaction energies consistent with the results of the DFT approach with Grimme dispersion correction applied. The cocrystal structure cohesive energy corresponds with the average stability of its components’ crystals. This is in agreement with the experimental observations. Thus, formation of the particularly strong 9-methyladenine:1-methylthymine motif (interaction energy around −70 kJ·mol–1, DFT(B3LYP)/pVTZ, BSSE and dispersive corrections applied) may constitute the driving force for cocrystal growth. All three systems form molecular layers governed by hydrogen-bond interactions whereas interacting mostly dispersively with each other. The interlayer contacts are found to be significant. Formation of particularly short H···H contacts is a distinctive feature of the cocrystal lattice. Also, creation of the cis-Hoogsteen–Watson–Crick (cHW) adenine-thymine base pair motif (Leontis and Westhof classification), instead of creating the most frequently appearing DNA Watson–Crick base pair (cWW), is remarkable. It occurs that this A:U/T orientation is slightly more stable than the analogous cWW one. Nevertheless, in RNA chains, being more flexible than DNA molecules, the cHW A:U base pairing remains rather rarely encountered, which is probably the effect of the rigidity of nucleic acid chain backbones. In general, the purine-pyrimidine interaction strength is most sensitive to the directionality of the formed hydrogen bonds.
doi_str_mv 10.1021/cg301393e
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cg301393e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a675287560</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-adb59a9ac4beda6c4018a4891aa54c45f0c2a385a9b613d133b5e12ec5edc0983</originalsourceid><addsrcrecordid>eNptUMtOwzAQjBBIlMKBP_CFA4eAHcdt0lsJhSKVhwSIY7R1NqlL6lS2KzW3_gLizsf1S0hVKBcOq53Rzoy043mnjF4wGrBLWXDKeMxxz2sxEUR-V1Cx_4vDiB96R9ZOKaXdDuct72tYVYV1iHq9-nwDZ6sNSIyS7yRerz7u0U3qEjLUSmOP-VvezKzhJKlm8xKXPZJMwBRIrlFb5Wry7BZZTZQmbrIRaYdLR6qcJKa2Dkoy0EVjR6N0QUBn5GEhS1SS9KXKyBVYJE-gNtdj7yCH0uLJz257rzeDl2Tojx5v75L-yAcuhPMhG4sYYpDhGDPoyJCyCMIoZgAilKHIqQyARwLicYfxjHE-FsgClAIzSeOIt73zba40lbUG83Ru1AxMnTKabopNd8U22rOtdg5WQpkb0FLZnSHoMt4Jg-6fDqRNp9XC6OaDf_K-AXPuidA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hoogsteen–Watson–Crick 9‑Methyladenine:1-Methylthymine Complex: Charge Density Study in the Context of Crystal Engineering and Nucleic Acid Base Pairing</title><source>American Chemical Society Journals</source><creator>Jarzembska, Katarzyna N ; Goral, Anna M ; Gajda, Roman ; Dominiak, Paulina M</creator><creatorcontrib>Jarzembska, Katarzyna N ; Goral, Anna M ; Gajda, Roman ; Dominiak, Paulina M</creatorcontrib><description>This study provides a detailed charge density distribution analysis supported by comprehensive energetic investigations. The nature of the intermolecular interactions existing in the 9-methyladenine:1-methylthymine cocrystal structure with respect to those specific for the corresponding monocomponent crystals is explored. Charge density topological investigations lead to reliable hydrogen-bond interaction energies consistent with the results of the DFT approach with Grimme dispersion correction applied. The cocrystal structure cohesive energy corresponds with the average stability of its components’ crystals. This is in agreement with the experimental observations. Thus, formation of the particularly strong 9-methyladenine:1-methylthymine motif (interaction energy around −70 kJ·mol–1, DFT(B3LYP)/pVTZ, BSSE and dispersive corrections applied) may constitute the driving force for cocrystal growth. All three systems form molecular layers governed by hydrogen-bond interactions whereas interacting mostly dispersively with each other. The interlayer contacts are found to be significant. Formation of particularly short H···H contacts is a distinctive feature of the cocrystal lattice. Also, creation of the cis-Hoogsteen–Watson–Crick (cHW) adenine-thymine base pair motif (Leontis and Westhof classification), instead of creating the most frequently appearing DNA Watson–Crick base pair (cWW), is remarkable. It occurs that this A:U/T orientation is slightly more stable than the analogous cWW one. Nevertheless, in RNA chains, being more flexible than DNA molecules, the cHW A:U base pairing remains rather rarely encountered, which is probably the effect of the rigidity of nucleic acid chain backbones. In general, the purine-pyrimidine interaction strength is most sensitive to the directionality of the formed hydrogen bonds.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/cg301393e</identifier><language>eng</language><publisher>Washington,DC: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electron states ; Exact sciences and technology ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of electronic structure calculations ; Physics ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><ispartof>Crystal growth &amp; design, 2013-01, Vol.13 (1), p.239-254</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-adb59a9ac4beda6c4018a4891aa54c45f0c2a385a9b613d133b5e12ec5edc0983</citedby><cites>FETCH-LOGICAL-a355t-adb59a9ac4beda6c4018a4891aa54c45f0c2a385a9b613d133b5e12ec5edc0983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cg301393e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cg301393e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27136427$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jarzembska, Katarzyna N</creatorcontrib><creatorcontrib>Goral, Anna M</creatorcontrib><creatorcontrib>Gajda, Roman</creatorcontrib><creatorcontrib>Dominiak, Paulina M</creatorcontrib><title>Hoogsteen–Watson–Crick 9‑Methyladenine:1-Methylthymine Complex: Charge Density Study in the Context of Crystal Engineering and Nucleic Acid Base Pairing</title><title>Crystal growth &amp; design</title><addtitle>Cryst. Growth Des</addtitle><description>This study provides a detailed charge density distribution analysis supported by comprehensive energetic investigations. The nature of the intermolecular interactions existing in the 9-methyladenine:1-methylthymine cocrystal structure with respect to those specific for the corresponding monocomponent crystals is explored. Charge density topological investigations lead to reliable hydrogen-bond interaction energies consistent with the results of the DFT approach with Grimme dispersion correction applied. The cocrystal structure cohesive energy corresponds with the average stability of its components’ crystals. This is in agreement with the experimental observations. Thus, formation of the particularly strong 9-methyladenine:1-methylthymine motif (interaction energy around −70 kJ·mol–1, DFT(B3LYP)/pVTZ, BSSE and dispersive corrections applied) may constitute the driving force for cocrystal growth. All three systems form molecular layers governed by hydrogen-bond interactions whereas interacting mostly dispersively with each other. The interlayer contacts are found to be significant. Formation of particularly short H···H contacts is a distinctive feature of the cocrystal lattice. Also, creation of the cis-Hoogsteen–Watson–Crick (cHW) adenine-thymine base pair motif (Leontis and Westhof classification), instead of creating the most frequently appearing DNA Watson–Crick base pair (cWW), is remarkable. It occurs that this A:U/T orientation is slightly more stable than the analogous cWW one. Nevertheless, in RNA chains, being more flexible than DNA molecules, the cHW A:U base pairing remains rather rarely encountered, which is probably the effect of the rigidity of nucleic acid chain backbones. In general, the purine-pyrimidine interaction strength is most sensitive to the directionality of the formed hydrogen bonds.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electron states</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of electronic structure calculations</subject><subject>Physics</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptUMtOwzAQjBBIlMKBP_CFA4eAHcdt0lsJhSKVhwSIY7R1NqlL6lS2KzW3_gLizsf1S0hVKBcOq53Rzoy043mnjF4wGrBLWXDKeMxxz2sxEUR-V1Cx_4vDiB96R9ZOKaXdDuct72tYVYV1iHq9-nwDZ6sNSIyS7yRerz7u0U3qEjLUSmOP-VvezKzhJKlm8xKXPZJMwBRIrlFb5Wry7BZZTZQmbrIRaYdLR6qcJKa2Dkoy0EVjR6N0QUBn5GEhS1SS9KXKyBVYJE-gNtdj7yCH0uLJz257rzeDl2Tojx5v75L-yAcuhPMhG4sYYpDhGDPoyJCyCMIoZgAilKHIqQyARwLicYfxjHE-FsgClAIzSeOIt73zba40lbUG83Ru1AxMnTKabopNd8U22rOtdg5WQpkb0FLZnSHoMt4Jg-6fDqRNp9XC6OaDf_K-AXPuidA</recordid><startdate>20130102</startdate><enddate>20130102</enddate><creator>Jarzembska, Katarzyna N</creator><creator>Goral, Anna M</creator><creator>Gajda, Roman</creator><creator>Dominiak, Paulina M</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130102</creationdate><title>Hoogsteen–Watson–Crick 9‑Methyladenine:1-Methylthymine Complex: Charge Density Study in the Context of Crystal Engineering and Nucleic Acid Base Pairing</title><author>Jarzembska, Katarzyna N ; Goral, Anna M ; Gajda, Roman ; Dominiak, Paulina M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-adb59a9ac4beda6c4018a4891aa54c45f0c2a385a9b613d133b5e12ec5edc0983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electron states</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of electronic structure calculations</topic><topic>Physics</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jarzembska, Katarzyna N</creatorcontrib><creatorcontrib>Goral, Anna M</creatorcontrib><creatorcontrib>Gajda, Roman</creatorcontrib><creatorcontrib>Dominiak, Paulina M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Crystal growth &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jarzembska, Katarzyna N</au><au>Goral, Anna M</au><au>Gajda, Roman</au><au>Dominiak, Paulina M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hoogsteen–Watson–Crick 9‑Methyladenine:1-Methylthymine Complex: Charge Density Study in the Context of Crystal Engineering and Nucleic Acid Base Pairing</atitle><jtitle>Crystal growth &amp; design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2013-01-02</date><risdate>2013</risdate><volume>13</volume><issue>1</issue><spage>239</spage><epage>254</epage><pages>239-254</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>This study provides a detailed charge density distribution analysis supported by comprehensive energetic investigations. The nature of the intermolecular interactions existing in the 9-methyladenine:1-methylthymine cocrystal structure with respect to those specific for the corresponding monocomponent crystals is explored. Charge density topological investigations lead to reliable hydrogen-bond interaction energies consistent with the results of the DFT approach with Grimme dispersion correction applied. The cocrystal structure cohesive energy corresponds with the average stability of its components’ crystals. This is in agreement with the experimental observations. Thus, formation of the particularly strong 9-methyladenine:1-methylthymine motif (interaction energy around −70 kJ·mol–1, DFT(B3LYP)/pVTZ, BSSE and dispersive corrections applied) may constitute the driving force for cocrystal growth. All three systems form molecular layers governed by hydrogen-bond interactions whereas interacting mostly dispersively with each other. The interlayer contacts are found to be significant. Formation of particularly short H···H contacts is a distinctive feature of the cocrystal lattice. Also, creation of the cis-Hoogsteen–Watson–Crick (cHW) adenine-thymine base pair motif (Leontis and Westhof classification), instead of creating the most frequently appearing DNA Watson–Crick base pair (cWW), is remarkable. It occurs that this A:U/T orientation is slightly more stable than the analogous cWW one. Nevertheless, in RNA chains, being more flexible than DNA molecules, the cHW A:U base pairing remains rather rarely encountered, which is probably the effect of the rigidity of nucleic acid chain backbones. In general, the purine-pyrimidine interaction strength is most sensitive to the directionality of the formed hydrogen bonds.</abstract><cop>Washington,DC</cop><pub>American Chemical Society</pub><doi>10.1021/cg301393e</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1528-7483
ispartof Crystal growth & design, 2013-01, Vol.13 (1), p.239-254
issn 1528-7483
1528-7505
language eng
recordid cdi_crossref_primary_10_1021_cg301393e
source American Chemical Society Journals
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Electron states
Exact sciences and technology
Materials science
Methods of crystal growth
physics of crystal growth
Methods of electronic structure calculations
Physics
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
title Hoogsteen–Watson–Crick 9‑Methyladenine:1-Methylthymine Complex: Charge Density Study in the Context of Crystal Engineering and Nucleic Acid Base Pairing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hoogsteen%E2%80%93Watson%E2%80%93Crick%209%E2%80%91Methyladenine:1-Methylthymine%20Complex:%20Charge%20Density%20Study%20in%20the%20Context%20of%20Crystal%20Engineering%20and%20Nucleic%20Acid%20Base%20Pairing&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Jarzembska,%20Katarzyna%20N&rft.date=2013-01-02&rft.volume=13&rft.issue=1&rft.spage=239&rft.epage=254&rft.pages=239-254&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/cg301393e&rft_dat=%3Cacs_cross%3Ea675287560%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true