Epitaxial Zinc-Blende CdTe Antidots in Rock-Salt PbTe Semiconductor Thermoelectric Matrix
The formation of zinc-blende CdTe antidots (bandgap of 1.5 eV at room temperature) embedded in a rock-salt PbTe semiconductor matrix with a narrow bandgap of 0.3 eV in properly annealed epitaxial CdTe/PbTe multilayers grown by molecular beam epitaxy on a GaAs(001) substrate is reported. Transmission...
Gespeichert in:
Veröffentlicht in: | Crystal growth & design 2011-11, Vol.11 (11), p.4794-4801 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4801 |
---|---|
container_issue | 11 |
container_start_page | 4794 |
container_title | Crystal growth & design |
container_volume | 11 |
creator | Szot, Michał Dybko, Krzysztof Dziawa, Piotr Kowalczyk, Leszek Smajek, Ewa Domukhovski, Viktor Taliashvili, Badri Dłużewski, Piotr Reszka, Anna Kowalski, Bogdan J Wiater, Maciej Wojtowicz, Tomasz Story, Tomasz |
description | The formation of zinc-blende CdTe antidots (bandgap of 1.5 eV at room temperature) embedded in a rock-salt PbTe semiconductor matrix with a narrow bandgap of 0.3 eV in properly annealed epitaxial CdTe/PbTe multilayers grown by molecular beam epitaxy on a GaAs(001) substrate is reported. Transmission microscopy and X-ray diffraction characterization revealed the monocrystalline zinc-blende crystal structure of the CdTe antidots. The CdTe antidots have a highly symmetric shape and size varying in a controlled way in the range from 5 to 30 nm, depending on the layer thicknesses in the initial multilayer CdTe/PbTe stack. The presented results indicate that the CdTe antidot growth mechanism is similar to that of PbTe dots embedded in a CdTe matrix and is driven by the nanoscale phase separation due to qualitative differences in the chemical bonding and crystal structure of PbTe and CdTe. The electrical characterization in terms of Hall effect, electrical conductivity, and Seebeck effect measurements showed that both n- and p-type conductivities can be obtained in these nanocomposite thermoelectric materials with carrier concentrations of 1017–1018 cm–3 and mobilities of about 200 cm2/(V s) at room temperature. About a 25% increase of the thermoelectric power as compared to that of the reference bulk thermoelectric PbTe crystals was found in heterostructures with the smallest CdTe antidots. |
doi_str_mv | 10.1021/cg200404f |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cg200404f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d30059550</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-8feb66bb917f7251d2942991e976f63029a56ef2013cc7568adb4c5c2fbe76853</originalsourceid><addsrcrecordid>eNptkDtPwzAUhS0EEqUw8A-8MDAEbMePeCxVeUhFIFoGWCLnxgaXNKlsVyr_nqBCWZjOlc53j3QOQqeUXFDC6CW8MUI44W4PDahgRaYEEfu_Ny_yQ3QU44IQomSeD9DLZOWT2XjT4FffQnbV2La2eFzPLR61yddditi3-KmDj2xmmoQfq96a2aWHrq3XkLqA5-82LDvbWEjBA743vWyO0YEzTbQnPzpEz9eT-fg2mz7c3I1H08ywQqescLaSsqo0VU4xQWumOdOaWq2kkzlh2ghpHSM0B1BCFqauOAhgrrJKFiIfovNtLoQuxmBduQp-acJnSUn5vUm526Rnz7bsykQwjQumBR93D4wrxonmf5yBWC66dWj7Bv_kfQFjA2yI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Epitaxial Zinc-Blende CdTe Antidots in Rock-Salt PbTe Semiconductor Thermoelectric Matrix</title><source>ACS Publications</source><creator>Szot, Michał ; Dybko, Krzysztof ; Dziawa, Piotr ; Kowalczyk, Leszek ; Smajek, Ewa ; Domukhovski, Viktor ; Taliashvili, Badri ; Dłużewski, Piotr ; Reszka, Anna ; Kowalski, Bogdan J ; Wiater, Maciej ; Wojtowicz, Tomasz ; Story, Tomasz</creator><creatorcontrib>Szot, Michał ; Dybko, Krzysztof ; Dziawa, Piotr ; Kowalczyk, Leszek ; Smajek, Ewa ; Domukhovski, Viktor ; Taliashvili, Badri ; Dłużewski, Piotr ; Reszka, Anna ; Kowalski, Bogdan J ; Wiater, Maciej ; Wojtowicz, Tomasz ; Story, Tomasz</creatorcontrib><description>The formation of zinc-blende CdTe antidots (bandgap of 1.5 eV at room temperature) embedded in a rock-salt PbTe semiconductor matrix with a narrow bandgap of 0.3 eV in properly annealed epitaxial CdTe/PbTe multilayers grown by molecular beam epitaxy on a GaAs(001) substrate is reported. Transmission microscopy and X-ray diffraction characterization revealed the monocrystalline zinc-blende crystal structure of the CdTe antidots. The CdTe antidots have a highly symmetric shape and size varying in a controlled way in the range from 5 to 30 nm, depending on the layer thicknesses in the initial multilayer CdTe/PbTe stack. The presented results indicate that the CdTe antidot growth mechanism is similar to that of PbTe dots embedded in a CdTe matrix and is driven by the nanoscale phase separation due to qualitative differences in the chemical bonding and crystal structure of PbTe and CdTe. The electrical characterization in terms of Hall effect, electrical conductivity, and Seebeck effect measurements showed that both n- and p-type conductivities can be obtained in these nanocomposite thermoelectric materials with carrier concentrations of 1017–1018 cm–3 and mobilities of about 200 cm2/(V s) at room temperature. About a 25% increase of the thermoelectric power as compared to that of the reference bulk thermoelectric PbTe crystals was found in heterostructures with the smallest CdTe antidots.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/cg200404f</identifier><language>eng</language><publisher>Washington,DC: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in multilayers, nanoscale materials and structures ; Exact sciences and technology ; Materials science ; Methods of nanofabrication ; Nanocrystalline materials ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Nanoscale pattern formation ; Physics ; Structure of solids and liquids; crystallography</subject><ispartof>Crystal growth & design, 2011-11, Vol.11 (11), p.4794-4801</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a289t-8feb66bb917f7251d2942991e976f63029a56ef2013cc7568adb4c5c2fbe76853</citedby><cites>FETCH-LOGICAL-a289t-8feb66bb917f7251d2942991e976f63029a56ef2013cc7568adb4c5c2fbe76853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cg200404f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cg200404f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24724094$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Szot, Michał</creatorcontrib><creatorcontrib>Dybko, Krzysztof</creatorcontrib><creatorcontrib>Dziawa, Piotr</creatorcontrib><creatorcontrib>Kowalczyk, Leszek</creatorcontrib><creatorcontrib>Smajek, Ewa</creatorcontrib><creatorcontrib>Domukhovski, Viktor</creatorcontrib><creatorcontrib>Taliashvili, Badri</creatorcontrib><creatorcontrib>Dłużewski, Piotr</creatorcontrib><creatorcontrib>Reszka, Anna</creatorcontrib><creatorcontrib>Kowalski, Bogdan J</creatorcontrib><creatorcontrib>Wiater, Maciej</creatorcontrib><creatorcontrib>Wojtowicz, Tomasz</creatorcontrib><creatorcontrib>Story, Tomasz</creatorcontrib><title>Epitaxial Zinc-Blende CdTe Antidots in Rock-Salt PbTe Semiconductor Thermoelectric Matrix</title><title>Crystal growth & design</title><addtitle>Cryst. Growth Des</addtitle><description>The formation of zinc-blende CdTe antidots (bandgap of 1.5 eV at room temperature) embedded in a rock-salt PbTe semiconductor matrix with a narrow bandgap of 0.3 eV in properly annealed epitaxial CdTe/PbTe multilayers grown by molecular beam epitaxy on a GaAs(001) substrate is reported. Transmission microscopy and X-ray diffraction characterization revealed the monocrystalline zinc-blende crystal structure of the CdTe antidots. The CdTe antidots have a highly symmetric shape and size varying in a controlled way in the range from 5 to 30 nm, depending on the layer thicknesses in the initial multilayer CdTe/PbTe stack. The presented results indicate that the CdTe antidot growth mechanism is similar to that of PbTe dots embedded in a CdTe matrix and is driven by the nanoscale phase separation due to qualitative differences in the chemical bonding and crystal structure of PbTe and CdTe. The electrical characterization in terms of Hall effect, electrical conductivity, and Seebeck effect measurements showed that both n- and p-type conductivities can be obtained in these nanocomposite thermoelectric materials with carrier concentrations of 1017–1018 cm–3 and mobilities of about 200 cm2/(V s) at room temperature. About a 25% increase of the thermoelectric power as compared to that of the reference bulk thermoelectric PbTe crystals was found in heterostructures with the smallest CdTe antidots.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in multilayers, nanoscale materials and structures</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Nanoscale pattern formation</subject><subject>Physics</subject><subject>Structure of solids and liquids; crystallography</subject><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptkDtPwzAUhS0EEqUw8A-8MDAEbMePeCxVeUhFIFoGWCLnxgaXNKlsVyr_nqBCWZjOlc53j3QOQqeUXFDC6CW8MUI44W4PDahgRaYEEfu_Ny_yQ3QU44IQomSeD9DLZOWT2XjT4FffQnbV2La2eFzPLR61yddditi3-KmDj2xmmoQfq96a2aWHrq3XkLqA5-82LDvbWEjBA743vWyO0YEzTbQnPzpEz9eT-fg2mz7c3I1H08ywQqescLaSsqo0VU4xQWumOdOaWq2kkzlh2ghpHSM0B1BCFqauOAhgrrJKFiIfovNtLoQuxmBduQp-acJnSUn5vUm526Rnz7bsykQwjQumBR93D4wrxonmf5yBWC66dWj7Bv_kfQFjA2yI</recordid><startdate>20111102</startdate><enddate>20111102</enddate><creator>Szot, Michał</creator><creator>Dybko, Krzysztof</creator><creator>Dziawa, Piotr</creator><creator>Kowalczyk, Leszek</creator><creator>Smajek, Ewa</creator><creator>Domukhovski, Viktor</creator><creator>Taliashvili, Badri</creator><creator>Dłużewski, Piotr</creator><creator>Reszka, Anna</creator><creator>Kowalski, Bogdan J</creator><creator>Wiater, Maciej</creator><creator>Wojtowicz, Tomasz</creator><creator>Story, Tomasz</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111102</creationdate><title>Epitaxial Zinc-Blende CdTe Antidots in Rock-Salt PbTe Semiconductor Thermoelectric Matrix</title><author>Szot, Michał ; Dybko, Krzysztof ; Dziawa, Piotr ; Kowalczyk, Leszek ; Smajek, Ewa ; Domukhovski, Viktor ; Taliashvili, Badri ; Dłużewski, Piotr ; Reszka, Anna ; Kowalski, Bogdan J ; Wiater, Maciej ; Wojtowicz, Tomasz ; Story, Tomasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-8feb66bb917f7251d2942991e976f63029a56ef2013cc7568adb4c5c2fbe76853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in multilayers, nanoscale materials and structures</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Nanoscale pattern formation</topic><topic>Physics</topic><topic>Structure of solids and liquids; crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szot, Michał</creatorcontrib><creatorcontrib>Dybko, Krzysztof</creatorcontrib><creatorcontrib>Dziawa, Piotr</creatorcontrib><creatorcontrib>Kowalczyk, Leszek</creatorcontrib><creatorcontrib>Smajek, Ewa</creatorcontrib><creatorcontrib>Domukhovski, Viktor</creatorcontrib><creatorcontrib>Taliashvili, Badri</creatorcontrib><creatorcontrib>Dłużewski, Piotr</creatorcontrib><creatorcontrib>Reszka, Anna</creatorcontrib><creatorcontrib>Kowalski, Bogdan J</creatorcontrib><creatorcontrib>Wiater, Maciej</creatorcontrib><creatorcontrib>Wojtowicz, Tomasz</creatorcontrib><creatorcontrib>Story, Tomasz</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Crystal growth & design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szot, Michał</au><au>Dybko, Krzysztof</au><au>Dziawa, Piotr</au><au>Kowalczyk, Leszek</au><au>Smajek, Ewa</au><au>Domukhovski, Viktor</au><au>Taliashvili, Badri</au><au>Dłużewski, Piotr</au><au>Reszka, Anna</au><au>Kowalski, Bogdan J</au><au>Wiater, Maciej</au><au>Wojtowicz, Tomasz</au><au>Story, Tomasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epitaxial Zinc-Blende CdTe Antidots in Rock-Salt PbTe Semiconductor Thermoelectric Matrix</atitle><jtitle>Crystal growth & design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2011-11-02</date><risdate>2011</risdate><volume>11</volume><issue>11</issue><spage>4794</spage><epage>4801</epage><pages>4794-4801</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>The formation of zinc-blende CdTe antidots (bandgap of 1.5 eV at room temperature) embedded in a rock-salt PbTe semiconductor matrix with a narrow bandgap of 0.3 eV in properly annealed epitaxial CdTe/PbTe multilayers grown by molecular beam epitaxy on a GaAs(001) substrate is reported. Transmission microscopy and X-ray diffraction characterization revealed the monocrystalline zinc-blende crystal structure of the CdTe antidots. The CdTe antidots have a highly symmetric shape and size varying in a controlled way in the range from 5 to 30 nm, depending on the layer thicknesses in the initial multilayer CdTe/PbTe stack. The presented results indicate that the CdTe antidot growth mechanism is similar to that of PbTe dots embedded in a CdTe matrix and is driven by the nanoscale phase separation due to qualitative differences in the chemical bonding and crystal structure of PbTe and CdTe. The electrical characterization in terms of Hall effect, electrical conductivity, and Seebeck effect measurements showed that both n- and p-type conductivities can be obtained in these nanocomposite thermoelectric materials with carrier concentrations of 1017–1018 cm–3 and mobilities of about 200 cm2/(V s) at room temperature. About a 25% increase of the thermoelectric power as compared to that of the reference bulk thermoelectric PbTe crystals was found in heterostructures with the smallest CdTe antidots.</abstract><cop>Washington,DC</cop><pub>American Chemical Society</pub><doi>10.1021/cg200404f</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1528-7483 |
ispartof | Crystal growth & design, 2011-11, Vol.11 (11), p.4794-4801 |
issn | 1528-7483 1528-7505 |
language | eng |
recordid | cdi_crossref_primary_10_1021_cg200404f |
source | ACS Publications |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic transport in multilayers, nanoscale materials and structures Exact sciences and technology Materials science Methods of nanofabrication Nanocrystalline materials Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals Nanoscale pattern formation Physics Structure of solids and liquids crystallography |
title | Epitaxial Zinc-Blende CdTe Antidots in Rock-Salt PbTe Semiconductor Thermoelectric Matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epitaxial%20Zinc-Blende%20CdTe%20Antidots%20in%20Rock-Salt%20PbTe%20Semiconductor%20Thermoelectric%20Matrix&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Szot,%20Micha%C5%82&rft.date=2011-11-02&rft.volume=11&rft.issue=11&rft.spage=4794&rft.epage=4801&rft.pages=4794-4801&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/cg200404f&rft_dat=%3Cacs_cross%3Ed30059550%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |