Insights into the Glycosaminoglycan-Mediated Cytotoxic Mechanism of Eosinophil Cationic Protein Revealed by NMR
Protein-glycosaminoglycan interactions are essential in many biological processes and human diseases, yet how their recognition occurs is poorly understood. Eosinophil cationic protein (ECP) is a cytotoxic ribonuclease that interacts with glycosaminoglycans at the cell surface; this promotes the des...
Gespeichert in:
Veröffentlicht in: | ACS chemical biology 2013-01, Vol.8 (1), p.144-151 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 151 |
---|---|
container_issue | 1 |
container_start_page | 144 |
container_title | ACS chemical biology |
container_volume | 8 |
creator | García-Mayoral, M. Flor Canales, Ángeles Díaz, Dolores López-Prados, Javier Moussaoui, Mohammed de Paz, José L Angulo, Jesús Nieto, Pedro M Jiménez-Barbero, Jesús Boix, Ester Bruix, Marta |
description | Protein-glycosaminoglycan interactions are essential in many biological processes and human diseases, yet how their recognition occurs is poorly understood. Eosinophil cationic protein (ECP) is a cytotoxic ribonuclease that interacts with glycosaminoglycans at the cell surface; this promotes the destabilization of the cellular membrane and triggers ECP’s toxic activity. To understand this membrane destabilization event and the differences in the toxicity of ECP and its homologues, the high resolution solution structure of the complex between full length folded ECP and a heparin-derived trisaccharide (O-iPr-α-d-GlcNS6S-α(1–4)-l-IdoA2S-α(1–4)-d-GlcNS6S) has been solved by NMR methods and molecular dynamics simulations. The bound protein retains the tertiary structure of the free protein. The 2S0 conformation of the IdoA ring is preferably recognized by the protein. We have identified the precise location of the heparin binding site, dissected the specific interactions responsible for molecular recognition, and defined the structural requirements for this interaction. The structure reveals the contribution of Arg7, Gln14, and His15 in helix α1, Gln40 in strand β1, His64 in loop 4, and His128 in strand β6 in the recognition event and corroborates the previously reported participation of residues Arg34–Asn39. The participation of the catalytic triad (His15, Lys38, His128) in recognizing the heparin mimetic reveals, at atomic resolution, the mechanism of heparin’s inhibition of ECP’s ribonucleolytic activity. We have integrated all the available data to propose a molecular model for the membrane interaction process. The solved NMR complex provides the structural model necessary to design inhibitors to block ECP’s toxicity implicated in eosinophil pathologies. |
doi_str_mv | 10.1021/cb300386v |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cb300386v</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d159879998</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-81c26fb357c44ea21c276b95eb27c905361386eb5a1591df1ca6078571bd5ce13</originalsourceid><addsrcrecordid>eNptkEtPwzAQhC0EoqVw4A8gXzhwCPgR53FEUVsqtYAqOEe24zSuEruK3Yr8e4wKPXHaWenb0c4AcIvRI0YEP0lBEaJZcjgDY8xYHGU5Tc9PmuQjcOXcFqGYJll-CUaEIsIoIWNgF8bpTeMd1MZb6BsF5-0greOdNnYTJDfRSlWae1XBYvDW2y8t4UrJhhvtOmhrOLUuwLtGt7DgXlsTgPfeeqUNXKuD4m24FQN8Xa2vwUXNW6dufucEfM6mH8VLtHybL4rnZcQpZj7KsCRJLShLZRwrTsKaJiJnSpBU5ojRBIe8SjCOWY6rGkueoDRjKRYVkwrTCXg4-sreOterutz1uuP9UGJU_pRWnkoL7N2R3e1Fp6oT-ddSAO6PAJeu3Np9b8Lr_xh9A0BodDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Insights into the Glycosaminoglycan-Mediated Cytotoxic Mechanism of Eosinophil Cationic Protein Revealed by NMR</title><source>ACS Publications</source><source>MEDLINE</source><creator>García-Mayoral, M. Flor ; Canales, Ángeles ; Díaz, Dolores ; López-Prados, Javier ; Moussaoui, Mohammed ; de Paz, José L ; Angulo, Jesús ; Nieto, Pedro M ; Jiménez-Barbero, Jesús ; Boix, Ester ; Bruix, Marta</creator><creatorcontrib>García-Mayoral, M. Flor ; Canales, Ángeles ; Díaz, Dolores ; López-Prados, Javier ; Moussaoui, Mohammed ; de Paz, José L ; Angulo, Jesús ; Nieto, Pedro M ; Jiménez-Barbero, Jesús ; Boix, Ester ; Bruix, Marta</creatorcontrib><description>Protein-glycosaminoglycan interactions are essential in many biological processes and human diseases, yet how their recognition occurs is poorly understood. Eosinophil cationic protein (ECP) is a cytotoxic ribonuclease that interacts with glycosaminoglycans at the cell surface; this promotes the destabilization of the cellular membrane and triggers ECP’s toxic activity. To understand this membrane destabilization event and the differences in the toxicity of ECP and its homologues, the high resolution solution structure of the complex between full length folded ECP and a heparin-derived trisaccharide (O-iPr-α-d-GlcNS6S-α(1–4)-l-IdoA2S-α(1–4)-d-GlcNS6S) has been solved by NMR methods and molecular dynamics simulations. The bound protein retains the tertiary structure of the free protein. The 2S0 conformation of the IdoA ring is preferably recognized by the protein. We have identified the precise location of the heparin binding site, dissected the specific interactions responsible for molecular recognition, and defined the structural requirements for this interaction. The structure reveals the contribution of Arg7, Gln14, and His15 in helix α1, Gln40 in strand β1, His64 in loop 4, and His128 in strand β6 in the recognition event and corroborates the previously reported participation of residues Arg34–Asn39. The participation of the catalytic triad (His15, Lys38, His128) in recognizing the heparin mimetic reveals, at atomic resolution, the mechanism of heparin’s inhibition of ECP’s ribonucleolytic activity. We have integrated all the available data to propose a molecular model for the membrane interaction process. The solved NMR complex provides the structural model necessary to design inhibitors to block ECP’s toxicity implicated in eosinophil pathologies.</description><identifier>ISSN: 1554-8929</identifier><identifier>EISSN: 1554-8937</identifier><identifier>DOI: 10.1021/cb300386v</identifier><identifier>PMID: 23025322</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding Sites ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Cytotoxins - chemistry ; Cytotoxins - metabolism ; Eosinophil Cationic Protein - chemistry ; Eosinophil Cationic Protein - metabolism ; Glycosaminoglycans - chemistry ; Glycosaminoglycans - metabolism ; Humans ; Magnetic Resonance Spectroscopy ; Models, Biological ; Models, Molecular ; Molecular Dynamics Simulation ; Protein Folding</subject><ispartof>ACS chemical biology, 2013-01, Vol.8 (1), p.144-151</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-81c26fb357c44ea21c276b95eb27c905361386eb5a1591df1ca6078571bd5ce13</citedby><cites>FETCH-LOGICAL-a315t-81c26fb357c44ea21c276b95eb27c905361386eb5a1591df1ca6078571bd5ce13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cb300386v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cb300386v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23025322$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>García-Mayoral, M. Flor</creatorcontrib><creatorcontrib>Canales, Ángeles</creatorcontrib><creatorcontrib>Díaz, Dolores</creatorcontrib><creatorcontrib>López-Prados, Javier</creatorcontrib><creatorcontrib>Moussaoui, Mohammed</creatorcontrib><creatorcontrib>de Paz, José L</creatorcontrib><creatorcontrib>Angulo, Jesús</creatorcontrib><creatorcontrib>Nieto, Pedro M</creatorcontrib><creatorcontrib>Jiménez-Barbero, Jesús</creatorcontrib><creatorcontrib>Boix, Ester</creatorcontrib><creatorcontrib>Bruix, Marta</creatorcontrib><title>Insights into the Glycosaminoglycan-Mediated Cytotoxic Mechanism of Eosinophil Cationic Protein Revealed by NMR</title><title>ACS chemical biology</title><addtitle>ACS Chem. Biol</addtitle><description>Protein-glycosaminoglycan interactions are essential in many biological processes and human diseases, yet how their recognition occurs is poorly understood. Eosinophil cationic protein (ECP) is a cytotoxic ribonuclease that interacts with glycosaminoglycans at the cell surface; this promotes the destabilization of the cellular membrane and triggers ECP’s toxic activity. To understand this membrane destabilization event and the differences in the toxicity of ECP and its homologues, the high resolution solution structure of the complex between full length folded ECP and a heparin-derived trisaccharide (O-iPr-α-d-GlcNS6S-α(1–4)-l-IdoA2S-α(1–4)-d-GlcNS6S) has been solved by NMR methods and molecular dynamics simulations. The bound protein retains the tertiary structure of the free protein. The 2S0 conformation of the IdoA ring is preferably recognized by the protein. We have identified the precise location of the heparin binding site, dissected the specific interactions responsible for molecular recognition, and defined the structural requirements for this interaction. The structure reveals the contribution of Arg7, Gln14, and His15 in helix α1, Gln40 in strand β1, His64 in loop 4, and His128 in strand β6 in the recognition event and corroborates the previously reported participation of residues Arg34–Asn39. The participation of the catalytic triad (His15, Lys38, His128) in recognizing the heparin mimetic reveals, at atomic resolution, the mechanism of heparin’s inhibition of ECP’s ribonucleolytic activity. We have integrated all the available data to propose a molecular model for the membrane interaction process. The solved NMR complex provides the structural model necessary to design inhibitors to block ECP’s toxicity implicated in eosinophil pathologies.</description><subject>Binding Sites</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Cytotoxins - chemistry</subject><subject>Cytotoxins - metabolism</subject><subject>Eosinophil Cationic Protein - chemistry</subject><subject>Eosinophil Cationic Protein - metabolism</subject><subject>Glycosaminoglycans - chemistry</subject><subject>Glycosaminoglycans - metabolism</subject><subject>Humans</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics Simulation</subject><subject>Protein Folding</subject><issn>1554-8929</issn><issn>1554-8937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkEtPwzAQhC0EoqVw4A8gXzhwCPgR53FEUVsqtYAqOEe24zSuEruK3Yr8e4wKPXHaWenb0c4AcIvRI0YEP0lBEaJZcjgDY8xYHGU5Tc9PmuQjcOXcFqGYJll-CUaEIsIoIWNgF8bpTeMd1MZb6BsF5-0greOdNnYTJDfRSlWae1XBYvDW2y8t4UrJhhvtOmhrOLUuwLtGt7DgXlsTgPfeeqUNXKuD4m24FQN8Xa2vwUXNW6dufucEfM6mH8VLtHybL4rnZcQpZj7KsCRJLShLZRwrTsKaJiJnSpBU5ojRBIe8SjCOWY6rGkueoDRjKRYVkwrTCXg4-sreOterutz1uuP9UGJU_pRWnkoL7N2R3e1Fp6oT-ddSAO6PAJeu3Np9b8Lr_xh9A0BodDw</recordid><startdate>20130118</startdate><enddate>20130118</enddate><creator>García-Mayoral, M. Flor</creator><creator>Canales, Ángeles</creator><creator>Díaz, Dolores</creator><creator>López-Prados, Javier</creator><creator>Moussaoui, Mohammed</creator><creator>de Paz, José L</creator><creator>Angulo, Jesús</creator><creator>Nieto, Pedro M</creator><creator>Jiménez-Barbero, Jesús</creator><creator>Boix, Ester</creator><creator>Bruix, Marta</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130118</creationdate><title>Insights into the Glycosaminoglycan-Mediated Cytotoxic Mechanism of Eosinophil Cationic Protein Revealed by NMR</title><author>García-Mayoral, M. Flor ; Canales, Ángeles ; Díaz, Dolores ; López-Prados, Javier ; Moussaoui, Mohammed ; de Paz, José L ; Angulo, Jesús ; Nieto, Pedro M ; Jiménez-Barbero, Jesús ; Boix, Ester ; Bruix, Marta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-81c26fb357c44ea21c276b95eb27c905361386eb5a1591df1ca6078571bd5ce13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Binding Sites</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Cytotoxins - chemistry</topic><topic>Cytotoxins - metabolism</topic><topic>Eosinophil Cationic Protein - chemistry</topic><topic>Eosinophil Cationic Protein - metabolism</topic><topic>Glycosaminoglycans - chemistry</topic><topic>Glycosaminoglycans - metabolism</topic><topic>Humans</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics Simulation</topic><topic>Protein Folding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-Mayoral, M. Flor</creatorcontrib><creatorcontrib>Canales, Ángeles</creatorcontrib><creatorcontrib>Díaz, Dolores</creatorcontrib><creatorcontrib>López-Prados, Javier</creatorcontrib><creatorcontrib>Moussaoui, Mohammed</creatorcontrib><creatorcontrib>de Paz, José L</creatorcontrib><creatorcontrib>Angulo, Jesús</creatorcontrib><creatorcontrib>Nieto, Pedro M</creatorcontrib><creatorcontrib>Jiménez-Barbero, Jesús</creatorcontrib><creatorcontrib>Boix, Ester</creatorcontrib><creatorcontrib>Bruix, Marta</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Mayoral, M. Flor</au><au>Canales, Ángeles</au><au>Díaz, Dolores</au><au>López-Prados, Javier</au><au>Moussaoui, Mohammed</au><au>de Paz, José L</au><au>Angulo, Jesús</au><au>Nieto, Pedro M</au><au>Jiménez-Barbero, Jesús</au><au>Boix, Ester</au><au>Bruix, Marta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the Glycosaminoglycan-Mediated Cytotoxic Mechanism of Eosinophil Cationic Protein Revealed by NMR</atitle><jtitle>ACS chemical biology</jtitle><addtitle>ACS Chem. Biol</addtitle><date>2013-01-18</date><risdate>2013</risdate><volume>8</volume><issue>1</issue><spage>144</spage><epage>151</epage><pages>144-151</pages><issn>1554-8929</issn><eissn>1554-8937</eissn><abstract>Protein-glycosaminoglycan interactions are essential in many biological processes and human diseases, yet how their recognition occurs is poorly understood. Eosinophil cationic protein (ECP) is a cytotoxic ribonuclease that interacts with glycosaminoglycans at the cell surface; this promotes the destabilization of the cellular membrane and triggers ECP’s toxic activity. To understand this membrane destabilization event and the differences in the toxicity of ECP and its homologues, the high resolution solution structure of the complex between full length folded ECP and a heparin-derived trisaccharide (O-iPr-α-d-GlcNS6S-α(1–4)-l-IdoA2S-α(1–4)-d-GlcNS6S) has been solved by NMR methods and molecular dynamics simulations. The bound protein retains the tertiary structure of the free protein. The 2S0 conformation of the IdoA ring is preferably recognized by the protein. We have identified the precise location of the heparin binding site, dissected the specific interactions responsible for molecular recognition, and defined the structural requirements for this interaction. The structure reveals the contribution of Arg7, Gln14, and His15 in helix α1, Gln40 in strand β1, His64 in loop 4, and His128 in strand β6 in the recognition event and corroborates the previously reported participation of residues Arg34–Asn39. The participation of the catalytic triad (His15, Lys38, His128) in recognizing the heparin mimetic reveals, at atomic resolution, the mechanism of heparin’s inhibition of ECP’s ribonucleolytic activity. We have integrated all the available data to propose a molecular model for the membrane interaction process. The solved NMR complex provides the structural model necessary to design inhibitors to block ECP’s toxicity implicated in eosinophil pathologies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23025322</pmid><doi>10.1021/cb300386v</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1554-8929 |
ispartof | ACS chemical biology, 2013-01, Vol.8 (1), p.144-151 |
issn | 1554-8929 1554-8937 |
language | eng |
recordid | cdi_crossref_primary_10_1021_cb300386v |
source | ACS Publications; MEDLINE |
subjects | Binding Sites Cell Membrane - chemistry Cell Membrane - metabolism Cytotoxins - chemistry Cytotoxins - metabolism Eosinophil Cationic Protein - chemistry Eosinophil Cationic Protein - metabolism Glycosaminoglycans - chemistry Glycosaminoglycans - metabolism Humans Magnetic Resonance Spectroscopy Models, Biological Models, Molecular Molecular Dynamics Simulation Protein Folding |
title | Insights into the Glycosaminoglycan-Mediated Cytotoxic Mechanism of Eosinophil Cationic Protein Revealed by NMR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20Glycosaminoglycan-Mediated%20Cytotoxic%20Mechanism%20of%20Eosinophil%20Cationic%20Protein%20Revealed%20by%20NMR&rft.jtitle=ACS%20chemical%20biology&rft.au=Garci%CC%81a-Mayoral,%20M.%20Flor&rft.date=2013-01-18&rft.volume=8&rft.issue=1&rft.spage=144&rft.epage=151&rft.pages=144-151&rft.issn=1554-8929&rft.eissn=1554-8937&rft_id=info:doi/10.1021/cb300386v&rft_dat=%3Cacs_cross%3Ed159879998%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23025322&rfr_iscdi=true |