Insights into the Glycosaminoglycan-Mediated Cytotoxic Mechanism of Eosinophil Cationic Protein Revealed by NMR

Protein-glycosaminoglycan interactions are essential in many biological processes and human diseases, yet how their recognition occurs is poorly understood. Eosinophil cationic protein (ECP) is a cytotoxic ribonuclease that interacts with glycosaminoglycans at the cell surface; this promotes the des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical biology 2013-01, Vol.8 (1), p.144-151
Hauptverfasser: García-Mayoral, M. Flor, Canales, Ángeles, Díaz, Dolores, López-Prados, Javier, Moussaoui, Mohammed, de Paz, José L, Angulo, Jesús, Nieto, Pedro M, Jiménez-Barbero, Jesús, Boix, Ester, Bruix, Marta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151
container_issue 1
container_start_page 144
container_title ACS chemical biology
container_volume 8
creator García-Mayoral, M. Flor
Canales, Ángeles
Díaz, Dolores
López-Prados, Javier
Moussaoui, Mohammed
de Paz, José L
Angulo, Jesús
Nieto, Pedro M
Jiménez-Barbero, Jesús
Boix, Ester
Bruix, Marta
description Protein-glycosaminoglycan interactions are essential in many biological processes and human diseases, yet how their recognition occurs is poorly understood. Eosinophil cationic protein (ECP) is a cytotoxic ribonuclease that interacts with glycosaminoglycans at the cell surface; this promotes the destabilization of the cellular membrane and triggers ECP’s toxic activity. To understand this membrane destabilization event and the differences in the toxicity of ECP and its homologues, the high resolution solution structure of the complex between full length folded ECP and a heparin-derived trisaccharide (O-iPr-α-d-GlcNS6S-α(1–4)-l-IdoA2S-α(1–4)-d-GlcNS6S) has been solved by NMR methods and molecular dynamics simulations. The bound protein retains the tertiary structure of the free protein. The 2S0 conformation of the IdoA ring is preferably recognized by the protein. We have identified the precise location of the heparin binding site, dissected the specific interactions responsible for molecular recognition, and defined the structural requirements for this interaction. The structure reveals the contribution of Arg7, Gln14, and His15 in helix α1, Gln40 in strand β1, His64 in loop 4, and His128 in strand β6 in the recognition event and corroborates the previously reported participation of residues Arg34–Asn39. The participation of the catalytic triad (His15, Lys38, His128) in recognizing the heparin mimetic reveals, at atomic resolution, the mechanism of heparin’s inhibition of ECP’s ribonucleolytic activity. We have integrated all the available data to propose a molecular model for the membrane interaction process. The solved NMR complex provides the structural model necessary to design inhibitors to block ECP’s toxicity implicated in eosinophil pathologies.
doi_str_mv 10.1021/cb300386v
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cb300386v</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d159879998</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-81c26fb357c44ea21c276b95eb27c905361386eb5a1591df1ca6078571bd5ce13</originalsourceid><addsrcrecordid>eNptkEtPwzAQhC0EoqVw4A8gXzhwCPgR53FEUVsqtYAqOEe24zSuEruK3Yr8e4wKPXHaWenb0c4AcIvRI0YEP0lBEaJZcjgDY8xYHGU5Tc9PmuQjcOXcFqGYJll-CUaEIsIoIWNgF8bpTeMd1MZb6BsF5-0greOdNnYTJDfRSlWae1XBYvDW2y8t4UrJhhvtOmhrOLUuwLtGt7DgXlsTgPfeeqUNXKuD4m24FQN8Xa2vwUXNW6dufucEfM6mH8VLtHybL4rnZcQpZj7KsCRJLShLZRwrTsKaJiJnSpBU5ojRBIe8SjCOWY6rGkueoDRjKRYVkwrTCXg4-sreOterutz1uuP9UGJU_pRWnkoL7N2R3e1Fp6oT-ddSAO6PAJeu3Np9b8Lr_xh9A0BodDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Insights into the Glycosaminoglycan-Mediated Cytotoxic Mechanism of Eosinophil Cationic Protein Revealed by NMR</title><source>ACS Publications</source><source>MEDLINE</source><creator>García-Mayoral, M. Flor ; Canales, Ángeles ; Díaz, Dolores ; López-Prados, Javier ; Moussaoui, Mohammed ; de Paz, José L ; Angulo, Jesús ; Nieto, Pedro M ; Jiménez-Barbero, Jesús ; Boix, Ester ; Bruix, Marta</creator><creatorcontrib>García-Mayoral, M. Flor ; Canales, Ángeles ; Díaz, Dolores ; López-Prados, Javier ; Moussaoui, Mohammed ; de Paz, José L ; Angulo, Jesús ; Nieto, Pedro M ; Jiménez-Barbero, Jesús ; Boix, Ester ; Bruix, Marta</creatorcontrib><description>Protein-glycosaminoglycan interactions are essential in many biological processes and human diseases, yet how their recognition occurs is poorly understood. Eosinophil cationic protein (ECP) is a cytotoxic ribonuclease that interacts with glycosaminoglycans at the cell surface; this promotes the destabilization of the cellular membrane and triggers ECP’s toxic activity. To understand this membrane destabilization event and the differences in the toxicity of ECP and its homologues, the high resolution solution structure of the complex between full length folded ECP and a heparin-derived trisaccharide (O-iPr-α-d-GlcNS6S-α(1–4)-l-IdoA2S-α(1–4)-d-GlcNS6S) has been solved by NMR methods and molecular dynamics simulations. The bound protein retains the tertiary structure of the free protein. The 2S0 conformation of the IdoA ring is preferably recognized by the protein. We have identified the precise location of the heparin binding site, dissected the specific interactions responsible for molecular recognition, and defined the structural requirements for this interaction. The structure reveals the contribution of Arg7, Gln14, and His15 in helix α1, Gln40 in strand β1, His64 in loop 4, and His128 in strand β6 in the recognition event and corroborates the previously reported participation of residues Arg34–Asn39. The participation of the catalytic triad (His15, Lys38, His128) in recognizing the heparin mimetic reveals, at atomic resolution, the mechanism of heparin’s inhibition of ECP’s ribonucleolytic activity. We have integrated all the available data to propose a molecular model for the membrane interaction process. The solved NMR complex provides the structural model necessary to design inhibitors to block ECP’s toxicity implicated in eosinophil pathologies.</description><identifier>ISSN: 1554-8929</identifier><identifier>EISSN: 1554-8937</identifier><identifier>DOI: 10.1021/cb300386v</identifier><identifier>PMID: 23025322</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding Sites ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Cytotoxins - chemistry ; Cytotoxins - metabolism ; Eosinophil Cationic Protein - chemistry ; Eosinophil Cationic Protein - metabolism ; Glycosaminoglycans - chemistry ; Glycosaminoglycans - metabolism ; Humans ; Magnetic Resonance Spectroscopy ; Models, Biological ; Models, Molecular ; Molecular Dynamics Simulation ; Protein Folding</subject><ispartof>ACS chemical biology, 2013-01, Vol.8 (1), p.144-151</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-81c26fb357c44ea21c276b95eb27c905361386eb5a1591df1ca6078571bd5ce13</citedby><cites>FETCH-LOGICAL-a315t-81c26fb357c44ea21c276b95eb27c905361386eb5a1591df1ca6078571bd5ce13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cb300386v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cb300386v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23025322$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>García-Mayoral, M. Flor</creatorcontrib><creatorcontrib>Canales, Ángeles</creatorcontrib><creatorcontrib>Díaz, Dolores</creatorcontrib><creatorcontrib>López-Prados, Javier</creatorcontrib><creatorcontrib>Moussaoui, Mohammed</creatorcontrib><creatorcontrib>de Paz, José L</creatorcontrib><creatorcontrib>Angulo, Jesús</creatorcontrib><creatorcontrib>Nieto, Pedro M</creatorcontrib><creatorcontrib>Jiménez-Barbero, Jesús</creatorcontrib><creatorcontrib>Boix, Ester</creatorcontrib><creatorcontrib>Bruix, Marta</creatorcontrib><title>Insights into the Glycosaminoglycan-Mediated Cytotoxic Mechanism of Eosinophil Cationic Protein Revealed by NMR</title><title>ACS chemical biology</title><addtitle>ACS Chem. Biol</addtitle><description>Protein-glycosaminoglycan interactions are essential in many biological processes and human diseases, yet how their recognition occurs is poorly understood. Eosinophil cationic protein (ECP) is a cytotoxic ribonuclease that interacts with glycosaminoglycans at the cell surface; this promotes the destabilization of the cellular membrane and triggers ECP’s toxic activity. To understand this membrane destabilization event and the differences in the toxicity of ECP and its homologues, the high resolution solution structure of the complex between full length folded ECP and a heparin-derived trisaccharide (O-iPr-α-d-GlcNS6S-α(1–4)-l-IdoA2S-α(1–4)-d-GlcNS6S) has been solved by NMR methods and molecular dynamics simulations. The bound protein retains the tertiary structure of the free protein. The 2S0 conformation of the IdoA ring is preferably recognized by the protein. We have identified the precise location of the heparin binding site, dissected the specific interactions responsible for molecular recognition, and defined the structural requirements for this interaction. The structure reveals the contribution of Arg7, Gln14, and His15 in helix α1, Gln40 in strand β1, His64 in loop 4, and His128 in strand β6 in the recognition event and corroborates the previously reported participation of residues Arg34–Asn39. The participation of the catalytic triad (His15, Lys38, His128) in recognizing the heparin mimetic reveals, at atomic resolution, the mechanism of heparin’s inhibition of ECP’s ribonucleolytic activity. We have integrated all the available data to propose a molecular model for the membrane interaction process. The solved NMR complex provides the structural model necessary to design inhibitors to block ECP’s toxicity implicated in eosinophil pathologies.</description><subject>Binding Sites</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Cytotoxins - chemistry</subject><subject>Cytotoxins - metabolism</subject><subject>Eosinophil Cationic Protein - chemistry</subject><subject>Eosinophil Cationic Protein - metabolism</subject><subject>Glycosaminoglycans - chemistry</subject><subject>Glycosaminoglycans - metabolism</subject><subject>Humans</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics Simulation</subject><subject>Protein Folding</subject><issn>1554-8929</issn><issn>1554-8937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkEtPwzAQhC0EoqVw4A8gXzhwCPgR53FEUVsqtYAqOEe24zSuEruK3Yr8e4wKPXHaWenb0c4AcIvRI0YEP0lBEaJZcjgDY8xYHGU5Tc9PmuQjcOXcFqGYJll-CUaEIsIoIWNgF8bpTeMd1MZb6BsF5-0greOdNnYTJDfRSlWae1XBYvDW2y8t4UrJhhvtOmhrOLUuwLtGt7DgXlsTgPfeeqUNXKuD4m24FQN8Xa2vwUXNW6dufucEfM6mH8VLtHybL4rnZcQpZj7KsCRJLShLZRwrTsKaJiJnSpBU5ojRBIe8SjCOWY6rGkueoDRjKRYVkwrTCXg4-sreOterutz1uuP9UGJU_pRWnkoL7N2R3e1Fp6oT-ddSAO6PAJeu3Np9b8Lr_xh9A0BodDw</recordid><startdate>20130118</startdate><enddate>20130118</enddate><creator>García-Mayoral, M. Flor</creator><creator>Canales, Ángeles</creator><creator>Díaz, Dolores</creator><creator>López-Prados, Javier</creator><creator>Moussaoui, Mohammed</creator><creator>de Paz, José L</creator><creator>Angulo, Jesús</creator><creator>Nieto, Pedro M</creator><creator>Jiménez-Barbero, Jesús</creator><creator>Boix, Ester</creator><creator>Bruix, Marta</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130118</creationdate><title>Insights into the Glycosaminoglycan-Mediated Cytotoxic Mechanism of Eosinophil Cationic Protein Revealed by NMR</title><author>García-Mayoral, M. Flor ; Canales, Ángeles ; Díaz, Dolores ; López-Prados, Javier ; Moussaoui, Mohammed ; de Paz, José L ; Angulo, Jesús ; Nieto, Pedro M ; Jiménez-Barbero, Jesús ; Boix, Ester ; Bruix, Marta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-81c26fb357c44ea21c276b95eb27c905361386eb5a1591df1ca6078571bd5ce13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Binding Sites</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Cytotoxins - chemistry</topic><topic>Cytotoxins - metabolism</topic><topic>Eosinophil Cationic Protein - chemistry</topic><topic>Eosinophil Cationic Protein - metabolism</topic><topic>Glycosaminoglycans - chemistry</topic><topic>Glycosaminoglycans - metabolism</topic><topic>Humans</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics Simulation</topic><topic>Protein Folding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-Mayoral, M. Flor</creatorcontrib><creatorcontrib>Canales, Ángeles</creatorcontrib><creatorcontrib>Díaz, Dolores</creatorcontrib><creatorcontrib>López-Prados, Javier</creatorcontrib><creatorcontrib>Moussaoui, Mohammed</creatorcontrib><creatorcontrib>de Paz, José L</creatorcontrib><creatorcontrib>Angulo, Jesús</creatorcontrib><creatorcontrib>Nieto, Pedro M</creatorcontrib><creatorcontrib>Jiménez-Barbero, Jesús</creatorcontrib><creatorcontrib>Boix, Ester</creatorcontrib><creatorcontrib>Bruix, Marta</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Mayoral, M. Flor</au><au>Canales, Ángeles</au><au>Díaz, Dolores</au><au>López-Prados, Javier</au><au>Moussaoui, Mohammed</au><au>de Paz, José L</au><au>Angulo, Jesús</au><au>Nieto, Pedro M</au><au>Jiménez-Barbero, Jesús</au><au>Boix, Ester</au><au>Bruix, Marta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the Glycosaminoglycan-Mediated Cytotoxic Mechanism of Eosinophil Cationic Protein Revealed by NMR</atitle><jtitle>ACS chemical biology</jtitle><addtitle>ACS Chem. Biol</addtitle><date>2013-01-18</date><risdate>2013</risdate><volume>8</volume><issue>1</issue><spage>144</spage><epage>151</epage><pages>144-151</pages><issn>1554-8929</issn><eissn>1554-8937</eissn><abstract>Protein-glycosaminoglycan interactions are essential in many biological processes and human diseases, yet how their recognition occurs is poorly understood. Eosinophil cationic protein (ECP) is a cytotoxic ribonuclease that interacts with glycosaminoglycans at the cell surface; this promotes the destabilization of the cellular membrane and triggers ECP’s toxic activity. To understand this membrane destabilization event and the differences in the toxicity of ECP and its homologues, the high resolution solution structure of the complex between full length folded ECP and a heparin-derived trisaccharide (O-iPr-α-d-GlcNS6S-α(1–4)-l-IdoA2S-α(1–4)-d-GlcNS6S) has been solved by NMR methods and molecular dynamics simulations. The bound protein retains the tertiary structure of the free protein. The 2S0 conformation of the IdoA ring is preferably recognized by the protein. We have identified the precise location of the heparin binding site, dissected the specific interactions responsible for molecular recognition, and defined the structural requirements for this interaction. The structure reveals the contribution of Arg7, Gln14, and His15 in helix α1, Gln40 in strand β1, His64 in loop 4, and His128 in strand β6 in the recognition event and corroborates the previously reported participation of residues Arg34–Asn39. The participation of the catalytic triad (His15, Lys38, His128) in recognizing the heparin mimetic reveals, at atomic resolution, the mechanism of heparin’s inhibition of ECP’s ribonucleolytic activity. We have integrated all the available data to propose a molecular model for the membrane interaction process. The solved NMR complex provides the structural model necessary to design inhibitors to block ECP’s toxicity implicated in eosinophil pathologies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23025322</pmid><doi>10.1021/cb300386v</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1554-8929
ispartof ACS chemical biology, 2013-01, Vol.8 (1), p.144-151
issn 1554-8929
1554-8937
language eng
recordid cdi_crossref_primary_10_1021_cb300386v
source ACS Publications; MEDLINE
subjects Binding Sites
Cell Membrane - chemistry
Cell Membrane - metabolism
Cytotoxins - chemistry
Cytotoxins - metabolism
Eosinophil Cationic Protein - chemistry
Eosinophil Cationic Protein - metabolism
Glycosaminoglycans - chemistry
Glycosaminoglycans - metabolism
Humans
Magnetic Resonance Spectroscopy
Models, Biological
Models, Molecular
Molecular Dynamics Simulation
Protein Folding
title Insights into the Glycosaminoglycan-Mediated Cytotoxic Mechanism of Eosinophil Cationic Protein Revealed by NMR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20Glycosaminoglycan-Mediated%20Cytotoxic%20Mechanism%20of%20Eosinophil%20Cationic%20Protein%20Revealed%20by%20NMR&rft.jtitle=ACS%20chemical%20biology&rft.au=Garci%CC%81a-Mayoral,%20M.%20Flor&rft.date=2013-01-18&rft.volume=8&rft.issue=1&rft.spage=144&rft.epage=151&rft.pages=144-151&rft.issn=1554-8929&rft.eissn=1554-8937&rft_id=info:doi/10.1021/cb300386v&rft_dat=%3Cacs_cross%3Ed159879998%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23025322&rfr_iscdi=true