Structural Changes Accompanying pH-Induced Dissociation of the β-Lactoglobulin Dimer

We have used NMR spectroscopy to determine the three-dimensional (3D) structure, and to characterize the backbone dynamics, of a recombinant version of bovine β-lactoglobulin (variant A) at pH 2.6, where the protein is a monomer. The structure of this low-pH form of β-lactoglobulin is very similar t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2000-04, Vol.39 (13), p.3565-3574
Hauptverfasser: Uhrínová, Stanislava, Smith, Mark H, Jameson, Geoffrey B, Uhrín, Dusan, Sawyer, Lindsay, Barlow, Paul N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3574
container_issue 13
container_start_page 3565
container_title Biochemistry (Easton)
container_volume 39
creator Uhrínová, Stanislava
Smith, Mark H
Jameson, Geoffrey B
Uhrín, Dusan
Sawyer, Lindsay
Barlow, Paul N
description We have used NMR spectroscopy to determine the three-dimensional (3D) structure, and to characterize the backbone dynamics, of a recombinant version of bovine β-lactoglobulin (variant A) at pH 2.6, where the protein is a monomer. The structure of this low-pH form of β-lactoglobulin is very similar to that of a subunit within the dimer at pH 6.2. The root-mean-square deviation from the pH 6.2 (crystal) structure, calculated for backbone atoms of residues 6−160, is ∼1.3 Å. Differences arise from the orientation, with respect to the calyx, of the A−B and C−D loops, and of the flanking three-turn α-helix. The hydrophobic cavity within the calyx is retained at low pH. The E−F loop (residues 85−90), which moves to occlude the opening of the cavity over the pH range 7.2−6.2, is in the “closed” position at pH 2.6, and the side chain of Glu89 is buried. We also carried out measurements of 15N T 1s and T 2s and 1H−15N heteronuclear NOEs at pH 2.6 and 37 °C. Although the residues of the E−F loop (residues 86−89) have the highest crystallographic B-factors, the conformation of this loop is reasonably well defined by the NMR data, and its backbone is not especially mobile on the pico- to nanosecond time scale. Several residues (Ser21, Lys60, Ala67, Leu87, and Glu112) exhibit large ratios of T 1 to T 2, consistent with conformational exchange on a micro- to millisecond time scale. The positions of these residues in the 3D structure of β-lactoglobulin are consistent with a role in modulating access to the hydrophobic cavity.
doi_str_mv 10.1021/bi992629o
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_bi992629o</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>i85167835</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-859ee3b1b40c5ff3cc4482cd4a41ce88e2632b27c7087619f4d8247d09f06d413</originalsourceid><addsrcrecordid>eNpt0M1Kw0AQB_BFFFurB19AcvHgIbpfSXaPJVpbLCi0PS-bzabdmmTDbgL2tXwQn8mUiHjwNAzzY4b5A3CN4D2CGD1khnMcY25PwBhFGIaU8-gUjCGEcYh5DEfgwvt931KY0HMwQjAhMYqiMdisWteptnOyDNKdrLfaB1OlbNXI-mDqbdDMw0Wdd0rnwaPx3iojW2PrwBZBu9PB12e4lKq129JmXWnqHlXaXYKzQpZeX_3UCdjMntbpPFy-Pi_S6TKUBLE2ZBHXmmQoo1BFRUGUopRhlVNJkdKMaRwTnOFEJZAlMeIFzRmmSQ55AeOcIjIBd8Ne5az3TheicaaS7iAQFMdoxG80vb0ZbNNllc7_yCGLHoQDML7VH79z6d5FnJAkEuu3lSBpNJuzFy6O_nbwUnmxt52r-1f_OfwNCD96Jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural Changes Accompanying pH-Induced Dissociation of the β-Lactoglobulin Dimer</title><source>ACS Publications</source><source>MEDLINE</source><creator>Uhrínová, Stanislava ; Smith, Mark H ; Jameson, Geoffrey B ; Uhrín, Dusan ; Sawyer, Lindsay ; Barlow, Paul N</creator><creatorcontrib>Uhrínová, Stanislava ; Smith, Mark H ; Jameson, Geoffrey B ; Uhrín, Dusan ; Sawyer, Lindsay ; Barlow, Paul N</creatorcontrib><description>We have used NMR spectroscopy to determine the three-dimensional (3D) structure, and to characterize the backbone dynamics, of a recombinant version of bovine β-lactoglobulin (variant A) at pH 2.6, where the protein is a monomer. The structure of this low-pH form of β-lactoglobulin is very similar to that of a subunit within the dimer at pH 6.2. The root-mean-square deviation from the pH 6.2 (crystal) structure, calculated for backbone atoms of residues 6−160, is ∼1.3 Å. Differences arise from the orientation, with respect to the calyx, of the A−B and C−D loops, and of the flanking three-turn α-helix. The hydrophobic cavity within the calyx is retained at low pH. The E−F loop (residues 85−90), which moves to occlude the opening of the cavity over the pH range 7.2−6.2, is in the “closed” position at pH 2.6, and the side chain of Glu89 is buried. We also carried out measurements of 15N T 1s and T 2s and 1H−15N heteronuclear NOEs at pH 2.6 and 37 °C. Although the residues of the E−F loop (residues 86−89) have the highest crystallographic B-factors, the conformation of this loop is reasonably well defined by the NMR data, and its backbone is not especially mobile on the pico- to nanosecond time scale. Several residues (Ser21, Lys60, Ala67, Leu87, and Glu112) exhibit large ratios of T 1 to T 2, consistent with conformational exchange on a micro- to millisecond time scale. The positions of these residues in the 3D structure of β-lactoglobulin are consistent with a role in modulating access to the hydrophobic cavity.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi992629o</identifier><identifier>PMID: 10736155</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Cattle ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Hydrogen-Ion Concentration ; Lactoglobulins - chemistry ; Lactoglobulins - metabolism ; Nuclear Magnetic Resonance, Biomolecular - methods ; Peptide Fragments - chemistry ; Protein Structure, Secondary ; Solutions ; Structure-Activity Relationship</subject><ispartof>Biochemistry (Easton), 2000-04, Vol.39 (13), p.3565-3574</ispartof><rights>Copyright © 2000 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a318t-859ee3b1b40c5ff3cc4482cd4a41ce88e2632b27c7087619f4d8247d09f06d413</citedby><cites>FETCH-LOGICAL-a318t-859ee3b1b40c5ff3cc4482cd4a41ce88e2632b27c7087619f4d8247d09f06d413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi992629o$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi992629o$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10736155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uhrínová, Stanislava</creatorcontrib><creatorcontrib>Smith, Mark H</creatorcontrib><creatorcontrib>Jameson, Geoffrey B</creatorcontrib><creatorcontrib>Uhrín, Dusan</creatorcontrib><creatorcontrib>Sawyer, Lindsay</creatorcontrib><creatorcontrib>Barlow, Paul N</creatorcontrib><title>Structural Changes Accompanying pH-Induced Dissociation of the β-Lactoglobulin Dimer</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>We have used NMR spectroscopy to determine the three-dimensional (3D) structure, and to characterize the backbone dynamics, of a recombinant version of bovine β-lactoglobulin (variant A) at pH 2.6, where the protein is a monomer. The structure of this low-pH form of β-lactoglobulin is very similar to that of a subunit within the dimer at pH 6.2. The root-mean-square deviation from the pH 6.2 (crystal) structure, calculated for backbone atoms of residues 6−160, is ∼1.3 Å. Differences arise from the orientation, with respect to the calyx, of the A−B and C−D loops, and of the flanking three-turn α-helix. The hydrophobic cavity within the calyx is retained at low pH. The E−F loop (residues 85−90), which moves to occlude the opening of the cavity over the pH range 7.2−6.2, is in the “closed” position at pH 2.6, and the side chain of Glu89 is buried. We also carried out measurements of 15N T 1s and T 2s and 1H−15N heteronuclear NOEs at pH 2.6 and 37 °C. Although the residues of the E−F loop (residues 86−89) have the highest crystallographic B-factors, the conformation of this loop is reasonably well defined by the NMR data, and its backbone is not especially mobile on the pico- to nanosecond time scale. Several residues (Ser21, Lys60, Ala67, Leu87, and Glu112) exhibit large ratios of T 1 to T 2, consistent with conformational exchange on a micro- to millisecond time scale. The positions of these residues in the 3D structure of β-lactoglobulin are consistent with a role in modulating access to the hydrophobic cavity.</description><subject>Animals</subject><subject>Cattle</subject><subject>Crystallization</subject><subject>Crystallography, X-Ray</subject><subject>Dimerization</subject><subject>Hydrogen-Ion Concentration</subject><subject>Lactoglobulins - chemistry</subject><subject>Lactoglobulins - metabolism</subject><subject>Nuclear Magnetic Resonance, Biomolecular - methods</subject><subject>Peptide Fragments - chemistry</subject><subject>Protein Structure, Secondary</subject><subject>Solutions</subject><subject>Structure-Activity Relationship</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0M1Kw0AQB_BFFFurB19AcvHgIbpfSXaPJVpbLCi0PS-bzabdmmTDbgL2tXwQn8mUiHjwNAzzY4b5A3CN4D2CGD1khnMcY25PwBhFGIaU8-gUjCGEcYh5DEfgwvt931KY0HMwQjAhMYqiMdisWteptnOyDNKdrLfaB1OlbNXI-mDqbdDMw0Wdd0rnwaPx3iojW2PrwBZBu9PB12e4lKq129JmXWnqHlXaXYKzQpZeX_3UCdjMntbpPFy-Pi_S6TKUBLE2ZBHXmmQoo1BFRUGUopRhlVNJkdKMaRwTnOFEJZAlMeIFzRmmSQ55AeOcIjIBd8Ne5az3TheicaaS7iAQFMdoxG80vb0ZbNNllc7_yCGLHoQDML7VH79z6d5FnJAkEuu3lSBpNJuzFy6O_nbwUnmxt52r-1f_OfwNCD96Jw</recordid><startdate>20000404</startdate><enddate>20000404</enddate><creator>Uhrínová, Stanislava</creator><creator>Smith, Mark H</creator><creator>Jameson, Geoffrey B</creator><creator>Uhrín, Dusan</creator><creator>Sawyer, Lindsay</creator><creator>Barlow, Paul N</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000404</creationdate><title>Structural Changes Accompanying pH-Induced Dissociation of the β-Lactoglobulin Dimer</title><author>Uhrínová, Stanislava ; Smith, Mark H ; Jameson, Geoffrey B ; Uhrín, Dusan ; Sawyer, Lindsay ; Barlow, Paul N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-859ee3b1b40c5ff3cc4482cd4a41ce88e2632b27c7087619f4d8247d09f06d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Cattle</topic><topic>Crystallization</topic><topic>Crystallography, X-Ray</topic><topic>Dimerization</topic><topic>Hydrogen-Ion Concentration</topic><topic>Lactoglobulins - chemistry</topic><topic>Lactoglobulins - metabolism</topic><topic>Nuclear Magnetic Resonance, Biomolecular - methods</topic><topic>Peptide Fragments - chemistry</topic><topic>Protein Structure, Secondary</topic><topic>Solutions</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uhrínová, Stanislava</creatorcontrib><creatorcontrib>Smith, Mark H</creatorcontrib><creatorcontrib>Jameson, Geoffrey B</creatorcontrib><creatorcontrib>Uhrín, Dusan</creatorcontrib><creatorcontrib>Sawyer, Lindsay</creatorcontrib><creatorcontrib>Barlow, Paul N</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uhrínová, Stanislava</au><au>Smith, Mark H</au><au>Jameson, Geoffrey B</au><au>Uhrín, Dusan</au><au>Sawyer, Lindsay</au><au>Barlow, Paul N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Changes Accompanying pH-Induced Dissociation of the β-Lactoglobulin Dimer</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2000-04-04</date><risdate>2000</risdate><volume>39</volume><issue>13</issue><spage>3565</spage><epage>3574</epage><pages>3565-3574</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>We have used NMR spectroscopy to determine the three-dimensional (3D) structure, and to characterize the backbone dynamics, of a recombinant version of bovine β-lactoglobulin (variant A) at pH 2.6, where the protein is a monomer. The structure of this low-pH form of β-lactoglobulin is very similar to that of a subunit within the dimer at pH 6.2. The root-mean-square deviation from the pH 6.2 (crystal) structure, calculated for backbone atoms of residues 6−160, is ∼1.3 Å. Differences arise from the orientation, with respect to the calyx, of the A−B and C−D loops, and of the flanking three-turn α-helix. The hydrophobic cavity within the calyx is retained at low pH. The E−F loop (residues 85−90), which moves to occlude the opening of the cavity over the pH range 7.2−6.2, is in the “closed” position at pH 2.6, and the side chain of Glu89 is buried. We also carried out measurements of 15N T 1s and T 2s and 1H−15N heteronuclear NOEs at pH 2.6 and 37 °C. Although the residues of the E−F loop (residues 86−89) have the highest crystallographic B-factors, the conformation of this loop is reasonably well defined by the NMR data, and its backbone is not especially mobile on the pico- to nanosecond time scale. Several residues (Ser21, Lys60, Ala67, Leu87, and Glu112) exhibit large ratios of T 1 to T 2, consistent with conformational exchange on a micro- to millisecond time scale. The positions of these residues in the 3D structure of β-lactoglobulin are consistent with a role in modulating access to the hydrophobic cavity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>10736155</pmid><doi>10.1021/bi992629o</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2000-04, Vol.39 (13), p.3565-3574
issn 0006-2960
1520-4995
language eng
recordid cdi_crossref_primary_10_1021_bi992629o
source ACS Publications; MEDLINE
subjects Animals
Cattle
Crystallization
Crystallography, X-Ray
Dimerization
Hydrogen-Ion Concentration
Lactoglobulins - chemistry
Lactoglobulins - metabolism
Nuclear Magnetic Resonance, Biomolecular - methods
Peptide Fragments - chemistry
Protein Structure, Secondary
Solutions
Structure-Activity Relationship
title Structural Changes Accompanying pH-Induced Dissociation of the β-Lactoglobulin Dimer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T01%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Changes%20Accompanying%20pH-Induced%20Dissociation%20of%20the%20%CE%B2-Lactoglobulin%20Dimer&rft.jtitle=Biochemistry%20(Easton)&rft.au=Uhr%C3%ADnov%C3%A1,%20Stanislava&rft.date=2000-04-04&rft.volume=39&rft.issue=13&rft.spage=3565&rft.epage=3574&rft.pages=3565-3574&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi992629o&rft_dat=%3Cacs_cross%3Ei85167835%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/10736155&rfr_iscdi=true