Structural and Kinetic Evidence for Strain in Biological Catalysis

A classic hypothesis for enzyme catalysis is the induction of strain in the substrate. This notion was first expressed by Haldane with the lock and key analogy“the key does not fit the lock perfectly but exercises a certain strain on it” (1). This mechanism has often been invoked to explain the cat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry 1998-10, Vol.37 (41), p.14404-14409
Hauptverfasser: Romesberg, Floyd E, Santarsiero, Bernard D, Spiller, Ben, Yin, Jun, Barnes, Dwight, Schultz, Peter G, Stevens, Raymond C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14409
container_issue 41
container_start_page 14404
container_title Biochemistry
container_volume 37
creator Romesberg, Floyd E
Santarsiero, Bernard D
Spiller, Ben
Yin, Jun
Barnes, Dwight
Schultz, Peter G
Stevens, Raymond C
description A classic hypothesis for enzyme catalysis is the induction of strain in the substrate. This notion was first expressed by Haldane with the lock and key analogy“the key does not fit the lock perfectly but exercises a certain strain on it” (1). This mechanism has often been invoked to explain the catalytic efficiency of enzymes but has been difficult to establish conclusively (2−7). Here we describe X-ray crystallographic and mutational studies of an antibody metal chelatase which strongly support the notion that this antibody catalyzes metal ion insertion into the porphyrin ring by inducing strain. Analysis of the germline precursor suggests that this strain mechanism arose during the process of affinity maturation in response to a conformationally distorted N-alkylmesoporphyrin.
doi_str_mv 10.1021/bi981578c
format Article
fullrecord <record><control><sourceid>istex_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_bi981578c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_MVXTPKL2_R</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-2fbb181cb3ede8cd8b826730e5a3aa555347cb598bc3c80f220ba321b454bda53</originalsourceid><addsrcrecordid>eNpt0E9LwzAYBvAgypzTgx9AqAcPHqpJmrTp0Y35ByeKTvEWkrepZs52JKnotzfSsZMQCOH58b7hQeiQ4DOCKTnXthSEFwK20JBwilNWlnwbDTHGeUrLHO-iPe8X8clwwQZoUBYFJXk-ROOn4DoInVPLRDVVcmsbEywk0y9bmQZMUrcuiUbZJolnbNtl-2Yh6okKavnjrd9HO7VaenOwvkfo-XI6n1yns_urm8nFLFUMlyGltdZEENCZqYyASmhB8yLDhqtMKc55xgrQvBQaMhC4phRrlVGiGWe6UjwboeN-buuDlR5sMPAObdMYCFJgTBiL5rQ34FrvnanlytlP5X4kwfKvKrmpKtqj3q46_WmqjVx3E_O0z60P5nsTK_ch478LLucPT_Lu5XX-cDuj8jH6k94r8HLRdq6Jbfyz9xfUYH6f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural and Kinetic Evidence for Strain in Biological Catalysis</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Romesberg, Floyd E ; Santarsiero, Bernard D ; Spiller, Ben ; Yin, Jun ; Barnes, Dwight ; Schultz, Peter G ; Stevens, Raymond C</creator><creatorcontrib>Romesberg, Floyd E ; Santarsiero, Bernard D ; Spiller, Ben ; Yin, Jun ; Barnes, Dwight ; Schultz, Peter G ; Stevens, Raymond C ; Ernest Orlando Lawrence Berkeley National Lab., Advanced Light Source, Berkeley, CA (US)</creatorcontrib><description>A classic hypothesis for enzyme catalysis is the induction of strain in the substrate. This notion was first expressed by Haldane with the lock and key analogy“the key does not fit the lock perfectly but exercises a certain strain on it” (1). This mechanism has often been invoked to explain the catalytic efficiency of enzymes but has been difficult to establish conclusively (2−7). Here we describe X-ray crystallographic and mutational studies of an antibody metal chelatase which strongly support the notion that this antibody catalyzes metal ion insertion into the porphyrin ring by inducing strain. Analysis of the germline precursor suggests that this strain mechanism arose during the process of affinity maturation in response to a conformationally distorted N-alkylmesoporphyrin.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi981578c</identifier><identifier>PMID: 9772166</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ADVANCED LIGHT SOURCE ; ADVANCED LIGHT SOURCE ALS ; Amino Acid Sequence ; Animals ; Antibodies, Monoclonal - chemistry ; Antibodies, Monoclonal - genetics ; Antibodies, Monoclonal - metabolism ; Antibody Affinity ; CATALYSIS ; Crystallography, X-Ray ; Ferrochelatase - chemistry ; Haptens - chemistry ; Humans ; Immunoglobulin Fab Fragments - chemistry ; Immunoglobulin Fab Fragments - genetics ; KINETICS ; Mesoporphyrins - immunology ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; PARTICLE ACCELERATORS ; Protein Conformation ; Recombinant Fusion Proteins - chemistry ; STRAINS</subject><ispartof>Biochemistry, 1998-10, Vol.37 (41), p.14404-14409</ispartof><rights>Copyright © 1998 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-2fbb181cb3ede8cd8b826730e5a3aa555347cb598bc3c80f220ba321b454bda53</citedby><cites>FETCH-LOGICAL-a409t-2fbb181cb3ede8cd8b826730e5a3aa555347cb598bc3c80f220ba321b454bda53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi981578c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi981578c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9772166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/800144$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Romesberg, Floyd E</creatorcontrib><creatorcontrib>Santarsiero, Bernard D</creatorcontrib><creatorcontrib>Spiller, Ben</creatorcontrib><creatorcontrib>Yin, Jun</creatorcontrib><creatorcontrib>Barnes, Dwight</creatorcontrib><creatorcontrib>Schultz, Peter G</creatorcontrib><creatorcontrib>Stevens, Raymond C</creatorcontrib><creatorcontrib>Ernest Orlando Lawrence Berkeley National Lab., Advanced Light Source, Berkeley, CA (US)</creatorcontrib><title>Structural and Kinetic Evidence for Strain in Biological Catalysis</title><title>Biochemistry</title><addtitle>Biochemistry</addtitle><description>A classic hypothesis for enzyme catalysis is the induction of strain in the substrate. This notion was first expressed by Haldane with the lock and key analogy“the key does not fit the lock perfectly but exercises a certain strain on it” (1). This mechanism has often been invoked to explain the catalytic efficiency of enzymes but has been difficult to establish conclusively (2−7). Here we describe X-ray crystallographic and mutational studies of an antibody metal chelatase which strongly support the notion that this antibody catalyzes metal ion insertion into the porphyrin ring by inducing strain. Analysis of the germline precursor suggests that this strain mechanism arose during the process of affinity maturation in response to a conformationally distorted N-alkylmesoporphyrin.</description><subject>ADVANCED LIGHT SOURCE</subject><subject>ADVANCED LIGHT SOURCE ALS</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Antibodies, Monoclonal - chemistry</subject><subject>Antibodies, Monoclonal - genetics</subject><subject>Antibodies, Monoclonal - metabolism</subject><subject>Antibody Affinity</subject><subject>CATALYSIS</subject><subject>Crystallography, X-Ray</subject><subject>Ferrochelatase - chemistry</subject><subject>Haptens - chemistry</subject><subject>Humans</subject><subject>Immunoglobulin Fab Fragments - chemistry</subject><subject>Immunoglobulin Fab Fragments - genetics</subject><subject>KINETICS</subject><subject>Mesoporphyrins - immunology</subject><subject>Mice</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>PARTICLE ACCELERATORS</subject><subject>Protein Conformation</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>STRAINS</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E9LwzAYBvAgypzTgx9AqAcPHqpJmrTp0Y35ByeKTvEWkrepZs52JKnotzfSsZMQCOH58b7hQeiQ4DOCKTnXthSEFwK20JBwilNWlnwbDTHGeUrLHO-iPe8X8clwwQZoUBYFJXk-ROOn4DoInVPLRDVVcmsbEywk0y9bmQZMUrcuiUbZJolnbNtl-2Yh6okKavnjrd9HO7VaenOwvkfo-XI6n1yns_urm8nFLFUMlyGltdZEENCZqYyASmhB8yLDhqtMKc55xgrQvBQaMhC4phRrlVGiGWe6UjwboeN-buuDlR5sMPAObdMYCFJgTBiL5rQ34FrvnanlytlP5X4kwfKvKrmpKtqj3q46_WmqjVx3E_O0z60P5nsTK_ch478LLucPT_Lu5XX-cDuj8jH6k94r8HLRdq6Jbfyz9xfUYH6f</recordid><startdate>19981013</startdate><enddate>19981013</enddate><creator>Romesberg, Floyd E</creator><creator>Santarsiero, Bernard D</creator><creator>Spiller, Ben</creator><creator>Yin, Jun</creator><creator>Barnes, Dwight</creator><creator>Schultz, Peter G</creator><creator>Stevens, Raymond C</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19981013</creationdate><title>Structural and Kinetic Evidence for Strain in Biological Catalysis</title><author>Romesberg, Floyd E ; Santarsiero, Bernard D ; Spiller, Ben ; Yin, Jun ; Barnes, Dwight ; Schultz, Peter G ; Stevens, Raymond C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-2fbb181cb3ede8cd8b826730e5a3aa555347cb598bc3c80f220ba321b454bda53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>ADVANCED LIGHT SOURCE</topic><topic>ADVANCED LIGHT SOURCE ALS</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Antibodies, Monoclonal - chemistry</topic><topic>Antibodies, Monoclonal - genetics</topic><topic>Antibodies, Monoclonal - metabolism</topic><topic>Antibody Affinity</topic><topic>CATALYSIS</topic><topic>Crystallography, X-Ray</topic><topic>Ferrochelatase - chemistry</topic><topic>Haptens - chemistry</topic><topic>Humans</topic><topic>Immunoglobulin Fab Fragments - chemistry</topic><topic>Immunoglobulin Fab Fragments - genetics</topic><topic>KINETICS</topic><topic>Mesoporphyrins - immunology</topic><topic>Mice</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>PARTICLE ACCELERATORS</topic><topic>Protein Conformation</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>STRAINS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romesberg, Floyd E</creatorcontrib><creatorcontrib>Santarsiero, Bernard D</creatorcontrib><creatorcontrib>Spiller, Ben</creatorcontrib><creatorcontrib>Yin, Jun</creatorcontrib><creatorcontrib>Barnes, Dwight</creatorcontrib><creatorcontrib>Schultz, Peter G</creatorcontrib><creatorcontrib>Stevens, Raymond C</creatorcontrib><creatorcontrib>Ernest Orlando Lawrence Berkeley National Lab., Advanced Light Source, Berkeley, CA (US)</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romesberg, Floyd E</au><au>Santarsiero, Bernard D</au><au>Spiller, Ben</au><au>Yin, Jun</au><au>Barnes, Dwight</au><au>Schultz, Peter G</au><au>Stevens, Raymond C</au><aucorp>Ernest Orlando Lawrence Berkeley National Lab., Advanced Light Source, Berkeley, CA (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and Kinetic Evidence for Strain in Biological Catalysis</atitle><jtitle>Biochemistry</jtitle><addtitle>Biochemistry</addtitle><date>1998-10-13</date><risdate>1998</risdate><volume>37</volume><issue>41</issue><spage>14404</spage><epage>14409</epage><pages>14404-14409</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>A classic hypothesis for enzyme catalysis is the induction of strain in the substrate. This notion was first expressed by Haldane with the lock and key analogy“the key does not fit the lock perfectly but exercises a certain strain on it” (1). This mechanism has often been invoked to explain the catalytic efficiency of enzymes but has been difficult to establish conclusively (2−7). Here we describe X-ray crystallographic and mutational studies of an antibody metal chelatase which strongly support the notion that this antibody catalyzes metal ion insertion into the porphyrin ring by inducing strain. Analysis of the germline precursor suggests that this strain mechanism arose during the process of affinity maturation in response to a conformationally distorted N-alkylmesoporphyrin.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>9772166</pmid><doi>10.1021/bi981578c</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry, 1998-10, Vol.37 (41), p.14404-14409
issn 0006-2960
1520-4995
language eng
recordid cdi_crossref_primary_10_1021_bi981578c
source MEDLINE; American Chemical Society Journals
subjects ADVANCED LIGHT SOURCE
ADVANCED LIGHT SOURCE ALS
Amino Acid Sequence
Animals
Antibodies, Monoclonal - chemistry
Antibodies, Monoclonal - genetics
Antibodies, Monoclonal - metabolism
Antibody Affinity
CATALYSIS
Crystallography, X-Ray
Ferrochelatase - chemistry
Haptens - chemistry
Humans
Immunoglobulin Fab Fragments - chemistry
Immunoglobulin Fab Fragments - genetics
KINETICS
Mesoporphyrins - immunology
Mice
Models, Molecular
Molecular Sequence Data
Mutagenesis, Site-Directed
PARTICLE ACCELERATORS
Protein Conformation
Recombinant Fusion Proteins - chemistry
STRAINS
title Structural and Kinetic Evidence for Strain in Biological Catalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20Kinetic%20Evidence%20for%20Strain%20in%20Biological%20Catalysis&rft.jtitle=Biochemistry&rft.au=Romesberg,%20Floyd%20E&rft.aucorp=Ernest%20Orlando%20Lawrence%20Berkeley%20National%20Lab.,%20Advanced%20Light%20Source,%20Berkeley,%20CA%20(US)&rft.date=1998-10-13&rft.volume=37&rft.issue=41&rft.spage=14404&rft.epage=14409&rft.pages=14404-14409&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi981578c&rft_dat=%3Cistex_osti_%3Eark_67375_TPS_MVXTPKL2_R%3C/istex_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/9772166&rfr_iscdi=true