Structural and Kinetic Evidence for Strain in Biological Catalysis
A classic hypothesis for enzyme catalysis is the induction of strain in the substrate. This notion was first expressed by Haldane with the lock and key analogy“the key does not fit the lock perfectly but exercises a certain strain on it” (1). This mechanism has often been invoked to explain the cat...
Gespeichert in:
Veröffentlicht in: | Biochemistry 1998-10, Vol.37 (41), p.14404-14409 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14409 |
---|---|
container_issue | 41 |
container_start_page | 14404 |
container_title | Biochemistry |
container_volume | 37 |
creator | Romesberg, Floyd E Santarsiero, Bernard D Spiller, Ben Yin, Jun Barnes, Dwight Schultz, Peter G Stevens, Raymond C |
description | A classic hypothesis for enzyme catalysis is the induction of strain in the substrate. This notion was first expressed by Haldane with the lock and key analogy“the key does not fit the lock perfectly but exercises a certain strain on it” (1). This mechanism has often been invoked to explain the catalytic efficiency of enzymes but has been difficult to establish conclusively (2−7). Here we describe X-ray crystallographic and mutational studies of an antibody metal chelatase which strongly support the notion that this antibody catalyzes metal ion insertion into the porphyrin ring by inducing strain. Analysis of the germline precursor suggests that this strain mechanism arose during the process of affinity maturation in response to a conformationally distorted N-alkylmesoporphyrin. |
doi_str_mv | 10.1021/bi981578c |
format | Article |
fullrecord | <record><control><sourceid>istex_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_bi981578c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_MVXTPKL2_R</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-2fbb181cb3ede8cd8b826730e5a3aa555347cb598bc3c80f220ba321b454bda53</originalsourceid><addsrcrecordid>eNpt0E9LwzAYBvAgypzTgx9AqAcPHqpJmrTp0Y35ByeKTvEWkrepZs52JKnotzfSsZMQCOH58b7hQeiQ4DOCKTnXthSEFwK20JBwilNWlnwbDTHGeUrLHO-iPe8X8clwwQZoUBYFJXk-ROOn4DoInVPLRDVVcmsbEywk0y9bmQZMUrcuiUbZJolnbNtl-2Yh6okKavnjrd9HO7VaenOwvkfo-XI6n1yns_urm8nFLFUMlyGltdZEENCZqYyASmhB8yLDhqtMKc55xgrQvBQaMhC4phRrlVGiGWe6UjwboeN-buuDlR5sMPAObdMYCFJgTBiL5rQ34FrvnanlytlP5X4kwfKvKrmpKtqj3q46_WmqjVx3E_O0z60P5nsTK_ch478LLucPT_Lu5XX-cDuj8jH6k94r8HLRdq6Jbfyz9xfUYH6f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structural and Kinetic Evidence for Strain in Biological Catalysis</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Romesberg, Floyd E ; Santarsiero, Bernard D ; Spiller, Ben ; Yin, Jun ; Barnes, Dwight ; Schultz, Peter G ; Stevens, Raymond C</creator><creatorcontrib>Romesberg, Floyd E ; Santarsiero, Bernard D ; Spiller, Ben ; Yin, Jun ; Barnes, Dwight ; Schultz, Peter G ; Stevens, Raymond C ; Ernest Orlando Lawrence Berkeley National Lab., Advanced Light Source, Berkeley, CA (US)</creatorcontrib><description>A classic hypothesis for enzyme catalysis is the induction of strain in the substrate. This notion was first expressed by Haldane with the lock and key analogy“the key does not fit the lock perfectly but exercises a certain strain on it” (1). This mechanism has often been invoked to explain the catalytic efficiency of enzymes but has been difficult to establish conclusively (2−7). Here we describe X-ray crystallographic and mutational studies of an antibody metal chelatase which strongly support the notion that this antibody catalyzes metal ion insertion into the porphyrin ring by inducing strain. Analysis of the germline precursor suggests that this strain mechanism arose during the process of affinity maturation in response to a conformationally distorted N-alkylmesoporphyrin.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi981578c</identifier><identifier>PMID: 9772166</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ADVANCED LIGHT SOURCE ; ADVANCED LIGHT SOURCE ALS ; Amino Acid Sequence ; Animals ; Antibodies, Monoclonal - chemistry ; Antibodies, Monoclonal - genetics ; Antibodies, Monoclonal - metabolism ; Antibody Affinity ; CATALYSIS ; Crystallography, X-Ray ; Ferrochelatase - chemistry ; Haptens - chemistry ; Humans ; Immunoglobulin Fab Fragments - chemistry ; Immunoglobulin Fab Fragments - genetics ; KINETICS ; Mesoporphyrins - immunology ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; PARTICLE ACCELERATORS ; Protein Conformation ; Recombinant Fusion Proteins - chemistry ; STRAINS</subject><ispartof>Biochemistry, 1998-10, Vol.37 (41), p.14404-14409</ispartof><rights>Copyright © 1998 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-2fbb181cb3ede8cd8b826730e5a3aa555347cb598bc3c80f220ba321b454bda53</citedby><cites>FETCH-LOGICAL-a409t-2fbb181cb3ede8cd8b826730e5a3aa555347cb598bc3c80f220ba321b454bda53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi981578c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi981578c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9772166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/800144$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Romesberg, Floyd E</creatorcontrib><creatorcontrib>Santarsiero, Bernard D</creatorcontrib><creatorcontrib>Spiller, Ben</creatorcontrib><creatorcontrib>Yin, Jun</creatorcontrib><creatorcontrib>Barnes, Dwight</creatorcontrib><creatorcontrib>Schultz, Peter G</creatorcontrib><creatorcontrib>Stevens, Raymond C</creatorcontrib><creatorcontrib>Ernest Orlando Lawrence Berkeley National Lab., Advanced Light Source, Berkeley, CA (US)</creatorcontrib><title>Structural and Kinetic Evidence for Strain in Biological Catalysis</title><title>Biochemistry</title><addtitle>Biochemistry</addtitle><description>A classic hypothesis for enzyme catalysis is the induction of strain in the substrate. This notion was first expressed by Haldane with the lock and key analogy“the key does not fit the lock perfectly but exercises a certain strain on it” (1). This mechanism has often been invoked to explain the catalytic efficiency of enzymes but has been difficult to establish conclusively (2−7). Here we describe X-ray crystallographic and mutational studies of an antibody metal chelatase which strongly support the notion that this antibody catalyzes metal ion insertion into the porphyrin ring by inducing strain. Analysis of the germline precursor suggests that this strain mechanism arose during the process of affinity maturation in response to a conformationally distorted N-alkylmesoporphyrin.</description><subject>ADVANCED LIGHT SOURCE</subject><subject>ADVANCED LIGHT SOURCE ALS</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Antibodies, Monoclonal - chemistry</subject><subject>Antibodies, Monoclonal - genetics</subject><subject>Antibodies, Monoclonal - metabolism</subject><subject>Antibody Affinity</subject><subject>CATALYSIS</subject><subject>Crystallography, X-Ray</subject><subject>Ferrochelatase - chemistry</subject><subject>Haptens - chemistry</subject><subject>Humans</subject><subject>Immunoglobulin Fab Fragments - chemistry</subject><subject>Immunoglobulin Fab Fragments - genetics</subject><subject>KINETICS</subject><subject>Mesoporphyrins - immunology</subject><subject>Mice</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>PARTICLE ACCELERATORS</subject><subject>Protein Conformation</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>STRAINS</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E9LwzAYBvAgypzTgx9AqAcPHqpJmrTp0Y35ByeKTvEWkrepZs52JKnotzfSsZMQCOH58b7hQeiQ4DOCKTnXthSEFwK20JBwilNWlnwbDTHGeUrLHO-iPe8X8clwwQZoUBYFJXk-ROOn4DoInVPLRDVVcmsbEywk0y9bmQZMUrcuiUbZJolnbNtl-2Yh6okKavnjrd9HO7VaenOwvkfo-XI6n1yns_urm8nFLFUMlyGltdZEENCZqYyASmhB8yLDhqtMKc55xgrQvBQaMhC4phRrlVGiGWe6UjwboeN-buuDlR5sMPAObdMYCFJgTBiL5rQ34FrvnanlytlP5X4kwfKvKrmpKtqj3q46_WmqjVx3E_O0z60P5nsTK_ch478LLucPT_Lu5XX-cDuj8jH6k94r8HLRdq6Jbfyz9xfUYH6f</recordid><startdate>19981013</startdate><enddate>19981013</enddate><creator>Romesberg, Floyd E</creator><creator>Santarsiero, Bernard D</creator><creator>Spiller, Ben</creator><creator>Yin, Jun</creator><creator>Barnes, Dwight</creator><creator>Schultz, Peter G</creator><creator>Stevens, Raymond C</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19981013</creationdate><title>Structural and Kinetic Evidence for Strain in Biological Catalysis</title><author>Romesberg, Floyd E ; Santarsiero, Bernard D ; Spiller, Ben ; Yin, Jun ; Barnes, Dwight ; Schultz, Peter G ; Stevens, Raymond C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-2fbb181cb3ede8cd8b826730e5a3aa555347cb598bc3c80f220ba321b454bda53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>ADVANCED LIGHT SOURCE</topic><topic>ADVANCED LIGHT SOURCE ALS</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Antibodies, Monoclonal - chemistry</topic><topic>Antibodies, Monoclonal - genetics</topic><topic>Antibodies, Monoclonal - metabolism</topic><topic>Antibody Affinity</topic><topic>CATALYSIS</topic><topic>Crystallography, X-Ray</topic><topic>Ferrochelatase - chemistry</topic><topic>Haptens - chemistry</topic><topic>Humans</topic><topic>Immunoglobulin Fab Fragments - chemistry</topic><topic>Immunoglobulin Fab Fragments - genetics</topic><topic>KINETICS</topic><topic>Mesoporphyrins - immunology</topic><topic>Mice</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>PARTICLE ACCELERATORS</topic><topic>Protein Conformation</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>STRAINS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romesberg, Floyd E</creatorcontrib><creatorcontrib>Santarsiero, Bernard D</creatorcontrib><creatorcontrib>Spiller, Ben</creatorcontrib><creatorcontrib>Yin, Jun</creatorcontrib><creatorcontrib>Barnes, Dwight</creatorcontrib><creatorcontrib>Schultz, Peter G</creatorcontrib><creatorcontrib>Stevens, Raymond C</creatorcontrib><creatorcontrib>Ernest Orlando Lawrence Berkeley National Lab., Advanced Light Source, Berkeley, CA (US)</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romesberg, Floyd E</au><au>Santarsiero, Bernard D</au><au>Spiller, Ben</au><au>Yin, Jun</au><au>Barnes, Dwight</au><au>Schultz, Peter G</au><au>Stevens, Raymond C</au><aucorp>Ernest Orlando Lawrence Berkeley National Lab., Advanced Light Source, Berkeley, CA (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and Kinetic Evidence for Strain in Biological Catalysis</atitle><jtitle>Biochemistry</jtitle><addtitle>Biochemistry</addtitle><date>1998-10-13</date><risdate>1998</risdate><volume>37</volume><issue>41</issue><spage>14404</spage><epage>14409</epage><pages>14404-14409</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>A classic hypothesis for enzyme catalysis is the induction of strain in the substrate. This notion was first expressed by Haldane with the lock and key analogy“the key does not fit the lock perfectly but exercises a certain strain on it” (1). This mechanism has often been invoked to explain the catalytic efficiency of enzymes but has been difficult to establish conclusively (2−7). Here we describe X-ray crystallographic and mutational studies of an antibody metal chelatase which strongly support the notion that this antibody catalyzes metal ion insertion into the porphyrin ring by inducing strain. Analysis of the germline precursor suggests that this strain mechanism arose during the process of affinity maturation in response to a conformationally distorted N-alkylmesoporphyrin.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>9772166</pmid><doi>10.1021/bi981578c</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry, 1998-10, Vol.37 (41), p.14404-14409 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_crossref_primary_10_1021_bi981578c |
source | MEDLINE; American Chemical Society Journals |
subjects | ADVANCED LIGHT SOURCE ADVANCED LIGHT SOURCE ALS Amino Acid Sequence Animals Antibodies, Monoclonal - chemistry Antibodies, Monoclonal - genetics Antibodies, Monoclonal - metabolism Antibody Affinity CATALYSIS Crystallography, X-Ray Ferrochelatase - chemistry Haptens - chemistry Humans Immunoglobulin Fab Fragments - chemistry Immunoglobulin Fab Fragments - genetics KINETICS Mesoporphyrins - immunology Mice Models, Molecular Molecular Sequence Data Mutagenesis, Site-Directed PARTICLE ACCELERATORS Protein Conformation Recombinant Fusion Proteins - chemistry STRAINS |
title | Structural and Kinetic Evidence for Strain in Biological Catalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20Kinetic%20Evidence%20for%20Strain%20in%20Biological%20Catalysis&rft.jtitle=Biochemistry&rft.au=Romesberg,%20Floyd%20E&rft.aucorp=Ernest%20Orlando%20Lawrence%20Berkeley%20National%20Lab.,%20Advanced%20Light%20Source,%20Berkeley,%20CA%20(US)&rft.date=1998-10-13&rft.volume=37&rft.issue=41&rft.spage=14404&rft.epage=14409&rft.pages=14404-14409&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi981578c&rft_dat=%3Cistex_osti_%3Eark_67375_TPS_MVXTPKL2_R%3C/istex_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/9772166&rfr_iscdi=true |