Quinone Electrophiles Selectively Adduct “Electrophile Binding Motifs” within Cytochrome c

Electrophiles generated endogenously, or via the metabolic bioactivation of drugs and other environmental chemicals, are capable of binding to a variety of nucleophilic sites within proteins. Factors that determine site selective susceptibility to electrophile-mediated post-translational modificatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2007-10, Vol.46 (39), p.11090-11100
Hauptverfasser: Fisher, Ashley A, Labenski, Matthew T, Malladi, Srinivas, Gokhale, Vijay, Bowen, Martina E, Milleron, Rania S, Bratton, Shawn B, Monks, Terrence J, Lau, Serrine S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11100
container_issue 39
container_start_page 11090
container_title Biochemistry (Easton)
container_volume 46
creator Fisher, Ashley A
Labenski, Matthew T
Malladi, Srinivas
Gokhale, Vijay
Bowen, Martina E
Milleron, Rania S
Bratton, Shawn B
Monks, Terrence J
Lau, Serrine S
description Electrophiles generated endogenously, or via the metabolic bioactivation of drugs and other environmental chemicals, are capable of binding to a variety of nucleophilic sites within proteins. Factors that determine site selective susceptibility to electrophile-mediated post-translational modifications, and the consequences of such alterations, remain largely unknown. To identify and characterize chemical-mediated protein adducts, electrophiles with known toxicity were utilized. Hydroquinone, and its mercapturic acid pathway metabolites, cause renal proximal tubular cell necrosis and nephrocarcinogenicity in rats. The adverse effects of HQ and its thioether metabolites are in part a consequence of their oxidation to the corresponding electrophilic 1,4-benzoquinones (BQ). We now report that BQ and 2-(N-acetylcystein-S-yl)benzoquinone (NAC-BQ) preferentially bind to solvent-exposed lysine-rich regions within cytochrome c. Furthermore, we have identified specific glutamic acid residues within cytochrome c as novel sites of NAC-BQ adduction. The microenvironment at the site of adduction governs both the initial specificity and the structure of the final adduct. The solvent accessibility and local pK a of the adducted and neighboring amino acids contribute to the selectivity of adduction. Postadduction chemistry subsequently alters the nature of the final adduct. Using molecular modeling, the impact of BQ and NAC-BQ adduction on cytochrome c was visualized, revealing the spatial rearrangement of critical residues necessary for protein−protein interactions. Consequently, BQ-adducted cytochrome c fails to initiate caspase-3 activation in native lysates and also inhibits Apaf-1 oligomerization into an apoptosome complex in a purely reconstituted system. In summary, a combination of mass spectroscopic, molecular modeling, and biochemical approaches confirms that electrophile−protein adducts produce structural alterations that influence biological function.
doi_str_mv 10.1021/bi700613w
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_bi700613w</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_M72V432J_V</sourcerecordid><originalsourceid>FETCH-LOGICAL-a266t-3bd411a8ae3437f1b571471c5da8db77d6195798f743f7ffb1a69cfb9687d5593</originalsourceid><addsrcrecordid>eNpt0M9PwjAUB_DGaATRg_-A6cWDh2m7de16RIK_AlEDcrTp1laKsJF1E7nxh-g_x1_iyAh68NS8vk_ey_sCcIrRJUY-vootQ4jiYLEHmjj0kUc4D_dBE1W_ns8paoAj5yZVSRAjh6CBWeQTilkTvD6XNs1SDbtTnRR5Nh_bqXZwoDel_dDTJWwrVSYFXK--_hp4bVNl0zfYzwpr3Hr1DRe2GNsUdpZFlozzbKZhcgwOjJw6fbJ9W-Dlpjvs3Hm9x9v7TrvnSZ_SwgtiRTCWkdQBCZjBccgwYTgJlYxUzJiimIeMR4aRwDBjYiwpT0zMacRUGPKgBS7quUmeOZdrI-a5ncl8KTASm4zELqPKntV2XsYzrX7lNpQKeDWwrtCfu77M3wVlAQvF8Gkg-swfkcB_EKPKn9deJk5MsjJPq1P_WfwDWvN_eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quinone Electrophiles Selectively Adduct “Electrophile Binding Motifs” within Cytochrome c</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Fisher, Ashley A ; Labenski, Matthew T ; Malladi, Srinivas ; Gokhale, Vijay ; Bowen, Martina E ; Milleron, Rania S ; Bratton, Shawn B ; Monks, Terrence J ; Lau, Serrine S</creator><creatorcontrib>Fisher, Ashley A ; Labenski, Matthew T ; Malladi, Srinivas ; Gokhale, Vijay ; Bowen, Martina E ; Milleron, Rania S ; Bratton, Shawn B ; Monks, Terrence J ; Lau, Serrine S</creatorcontrib><description>Electrophiles generated endogenously, or via the metabolic bioactivation of drugs and other environmental chemicals, are capable of binding to a variety of nucleophilic sites within proteins. Factors that determine site selective susceptibility to electrophile-mediated post-translational modifications, and the consequences of such alterations, remain largely unknown. To identify and characterize chemical-mediated protein adducts, electrophiles with known toxicity were utilized. Hydroquinone, and its mercapturic acid pathway metabolites, cause renal proximal tubular cell necrosis and nephrocarcinogenicity in rats. The adverse effects of HQ and its thioether metabolites are in part a consequence of their oxidation to the corresponding electrophilic 1,4-benzoquinones (BQ). We now report that BQ and 2-(N-acetylcystein-S-yl)benzoquinone (NAC-BQ) preferentially bind to solvent-exposed lysine-rich regions within cytochrome c. Furthermore, we have identified specific glutamic acid residues within cytochrome c as novel sites of NAC-BQ adduction. The microenvironment at the site of adduction governs both the initial specificity and the structure of the final adduct. The solvent accessibility and local pK a of the adducted and neighboring amino acids contribute to the selectivity of adduction. Postadduction chemistry subsequently alters the nature of the final adduct. Using molecular modeling, the impact of BQ and NAC-BQ adduction on cytochrome c was visualized, revealing the spatial rearrangement of critical residues necessary for protein−protein interactions. Consequently, BQ-adducted cytochrome c fails to initiate caspase-3 activation in native lysates and also inhibits Apaf-1 oligomerization into an apoptosome complex in a purely reconstituted system. In summary, a combination of mass spectroscopic, molecular modeling, and biochemical approaches confirms that electrophile−protein adducts produce structural alterations that influence biological function.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi700613w</identifier><identifier>PMID: 17824617</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acetylcysteine - chemistry ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Apoptosomes - drug effects ; Apoptosomes - metabolism ; Benzoquinones - chemistry ; Benzoquinones - pharmacology ; Caspase 3 - chemistry ; Caspase 3 - metabolism ; Caspase 9 - chemistry ; Caspase 9 - metabolism ; Cell Line, Tumor ; Chromatography, Liquid ; Circular Dichroism ; Cytochromes c - chemistry ; Cytochromes c - metabolism ; Horses ; Humans ; Hydrogen-Ion Concentration ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Protein Binding - drug effects ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Tandem Mass Spectrometry</subject><ispartof>Biochemistry (Easton), 2007-10, Vol.46 (39), p.11090-11100</ispartof><rights>Copyright © 2007 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a266t-3bd411a8ae3437f1b571471c5da8db77d6195798f743f7ffb1a69cfb9687d5593</citedby><cites>FETCH-LOGICAL-a266t-3bd411a8ae3437f1b571471c5da8db77d6195798f743f7ffb1a69cfb9687d5593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi700613w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi700613w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17824617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fisher, Ashley A</creatorcontrib><creatorcontrib>Labenski, Matthew T</creatorcontrib><creatorcontrib>Malladi, Srinivas</creatorcontrib><creatorcontrib>Gokhale, Vijay</creatorcontrib><creatorcontrib>Bowen, Martina E</creatorcontrib><creatorcontrib>Milleron, Rania S</creatorcontrib><creatorcontrib>Bratton, Shawn B</creatorcontrib><creatorcontrib>Monks, Terrence J</creatorcontrib><creatorcontrib>Lau, Serrine S</creatorcontrib><title>Quinone Electrophiles Selectively Adduct “Electrophile Binding Motifs” within Cytochrome c</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Electrophiles generated endogenously, or via the metabolic bioactivation of drugs and other environmental chemicals, are capable of binding to a variety of nucleophilic sites within proteins. Factors that determine site selective susceptibility to electrophile-mediated post-translational modifications, and the consequences of such alterations, remain largely unknown. To identify and characterize chemical-mediated protein adducts, electrophiles with known toxicity were utilized. Hydroquinone, and its mercapturic acid pathway metabolites, cause renal proximal tubular cell necrosis and nephrocarcinogenicity in rats. The adverse effects of HQ and its thioether metabolites are in part a consequence of their oxidation to the corresponding electrophilic 1,4-benzoquinones (BQ). We now report that BQ and 2-(N-acetylcystein-S-yl)benzoquinone (NAC-BQ) preferentially bind to solvent-exposed lysine-rich regions within cytochrome c. Furthermore, we have identified specific glutamic acid residues within cytochrome c as novel sites of NAC-BQ adduction. The microenvironment at the site of adduction governs both the initial specificity and the structure of the final adduct. The solvent accessibility and local pK a of the adducted and neighboring amino acids contribute to the selectivity of adduction. Postadduction chemistry subsequently alters the nature of the final adduct. Using molecular modeling, the impact of BQ and NAC-BQ adduction on cytochrome c was visualized, revealing the spatial rearrangement of critical residues necessary for protein−protein interactions. Consequently, BQ-adducted cytochrome c fails to initiate caspase-3 activation in native lysates and also inhibits Apaf-1 oligomerization into an apoptosome complex in a purely reconstituted system. In summary, a combination of mass spectroscopic, molecular modeling, and biochemical approaches confirms that electrophile−protein adducts produce structural alterations that influence biological function.</description><subject>Acetylcysteine - chemistry</subject><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Apoptosomes - drug effects</subject><subject>Apoptosomes - metabolism</subject><subject>Benzoquinones - chemistry</subject><subject>Benzoquinones - pharmacology</subject><subject>Caspase 3 - chemistry</subject><subject>Caspase 3 - metabolism</subject><subject>Caspase 9 - chemistry</subject><subject>Caspase 9 - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Chromatography, Liquid</subject><subject>Circular Dichroism</subject><subject>Cytochromes c - chemistry</subject><subject>Cytochromes c - metabolism</subject><subject>Horses</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Molecular Structure</subject><subject>Protein Binding - drug effects</subject><subject>Protein Conformation</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Tandem Mass Spectrometry</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0M9PwjAUB_DGaATRg_-A6cWDh2m7de16RIK_AlEDcrTp1laKsJF1E7nxh-g_x1_iyAh68NS8vk_ey_sCcIrRJUY-vootQ4jiYLEHmjj0kUc4D_dBE1W_ns8paoAj5yZVSRAjh6CBWeQTilkTvD6XNs1SDbtTnRR5Nh_bqXZwoDel_dDTJWwrVSYFXK--_hp4bVNl0zfYzwpr3Hr1DRe2GNsUdpZFlozzbKZhcgwOjJw6fbJ9W-Dlpjvs3Hm9x9v7TrvnSZ_SwgtiRTCWkdQBCZjBccgwYTgJlYxUzJiimIeMR4aRwDBjYiwpT0zMacRUGPKgBS7quUmeOZdrI-a5ncl8KTASm4zELqPKntV2XsYzrX7lNpQKeDWwrtCfu77M3wVlAQvF8Gkg-swfkcB_EKPKn9deJk5MsjJPq1P_WfwDWvN_eg</recordid><startdate>20071002</startdate><enddate>20071002</enddate><creator>Fisher, Ashley A</creator><creator>Labenski, Matthew T</creator><creator>Malladi, Srinivas</creator><creator>Gokhale, Vijay</creator><creator>Bowen, Martina E</creator><creator>Milleron, Rania S</creator><creator>Bratton, Shawn B</creator><creator>Monks, Terrence J</creator><creator>Lau, Serrine S</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20071002</creationdate><title>Quinone Electrophiles Selectively Adduct “Electrophile Binding Motifs” within Cytochrome c</title><author>Fisher, Ashley A ; Labenski, Matthew T ; Malladi, Srinivas ; Gokhale, Vijay ; Bowen, Martina E ; Milleron, Rania S ; Bratton, Shawn B ; Monks, Terrence J ; Lau, Serrine S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a266t-3bd411a8ae3437f1b571471c5da8db77d6195798f743f7ffb1a69cfb9687d5593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acetylcysteine - chemistry</topic><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Apoptosomes - drug effects</topic><topic>Apoptosomes - metabolism</topic><topic>Benzoquinones - chemistry</topic><topic>Benzoquinones - pharmacology</topic><topic>Caspase 3 - chemistry</topic><topic>Caspase 3 - metabolism</topic><topic>Caspase 9 - chemistry</topic><topic>Caspase 9 - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Chromatography, Liquid</topic><topic>Circular Dichroism</topic><topic>Cytochromes c - chemistry</topic><topic>Cytochromes c - metabolism</topic><topic>Horses</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Molecular Structure</topic><topic>Protein Binding - drug effects</topic><topic>Protein Conformation</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Tandem Mass Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fisher, Ashley A</creatorcontrib><creatorcontrib>Labenski, Matthew T</creatorcontrib><creatorcontrib>Malladi, Srinivas</creatorcontrib><creatorcontrib>Gokhale, Vijay</creatorcontrib><creatorcontrib>Bowen, Martina E</creatorcontrib><creatorcontrib>Milleron, Rania S</creatorcontrib><creatorcontrib>Bratton, Shawn B</creatorcontrib><creatorcontrib>Monks, Terrence J</creatorcontrib><creatorcontrib>Lau, Serrine S</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fisher, Ashley A</au><au>Labenski, Matthew T</au><au>Malladi, Srinivas</au><au>Gokhale, Vijay</au><au>Bowen, Martina E</au><au>Milleron, Rania S</au><au>Bratton, Shawn B</au><au>Monks, Terrence J</au><au>Lau, Serrine S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quinone Electrophiles Selectively Adduct “Electrophile Binding Motifs” within Cytochrome c</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2007-10-02</date><risdate>2007</risdate><volume>46</volume><issue>39</issue><spage>11090</spage><epage>11100</epage><pages>11090-11100</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Electrophiles generated endogenously, or via the metabolic bioactivation of drugs and other environmental chemicals, are capable of binding to a variety of nucleophilic sites within proteins. Factors that determine site selective susceptibility to electrophile-mediated post-translational modifications, and the consequences of such alterations, remain largely unknown. To identify and characterize chemical-mediated protein adducts, electrophiles with known toxicity were utilized. Hydroquinone, and its mercapturic acid pathway metabolites, cause renal proximal tubular cell necrosis and nephrocarcinogenicity in rats. The adverse effects of HQ and its thioether metabolites are in part a consequence of their oxidation to the corresponding electrophilic 1,4-benzoquinones (BQ). We now report that BQ and 2-(N-acetylcystein-S-yl)benzoquinone (NAC-BQ) preferentially bind to solvent-exposed lysine-rich regions within cytochrome c. Furthermore, we have identified specific glutamic acid residues within cytochrome c as novel sites of NAC-BQ adduction. The microenvironment at the site of adduction governs both the initial specificity and the structure of the final adduct. The solvent accessibility and local pK a of the adducted and neighboring amino acids contribute to the selectivity of adduction. Postadduction chemistry subsequently alters the nature of the final adduct. Using molecular modeling, the impact of BQ and NAC-BQ adduction on cytochrome c was visualized, revealing the spatial rearrangement of critical residues necessary for protein−protein interactions. Consequently, BQ-adducted cytochrome c fails to initiate caspase-3 activation in native lysates and also inhibits Apaf-1 oligomerization into an apoptosome complex in a purely reconstituted system. In summary, a combination of mass spectroscopic, molecular modeling, and biochemical approaches confirms that electrophile−protein adducts produce structural alterations that influence biological function.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17824617</pmid><doi>10.1021/bi700613w</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2007-10, Vol.46 (39), p.11090-11100
issn 0006-2960
1520-4995
language eng
recordid cdi_crossref_primary_10_1021_bi700613w
source MEDLINE; American Chemical Society Journals
subjects Acetylcysteine - chemistry
Amino Acid Motifs
Amino Acid Sequence
Animals
Apoptosomes - drug effects
Apoptosomes - metabolism
Benzoquinones - chemistry
Benzoquinones - pharmacology
Caspase 3 - chemistry
Caspase 3 - metabolism
Caspase 9 - chemistry
Caspase 9 - metabolism
Cell Line, Tumor
Chromatography, Liquid
Circular Dichroism
Cytochromes c - chemistry
Cytochromes c - metabolism
Horses
Humans
Hydrogen-Ion Concentration
Models, Molecular
Molecular Sequence Data
Molecular Structure
Protein Binding - drug effects
Protein Conformation
Protein Structure, Secondary
Protein Structure, Tertiary
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Tandem Mass Spectrometry
title Quinone Electrophiles Selectively Adduct “Electrophile Binding Motifs” within Cytochrome c
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A59%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quinone%20Electrophiles%20Selectively%20Adduct%20%E2%80%9CElectrophile%20Binding%20Motifs%E2%80%9D%20within%20Cytochrome%20c&rft.jtitle=Biochemistry%20(Easton)&rft.au=Fisher,%20Ashley%20A&rft.date=2007-10-02&rft.volume=46&rft.issue=39&rft.spage=11090&rft.epage=11100&rft.pages=11090-11100&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi700613w&rft_dat=%3Cistex_cross%3Eark_67375_TPS_M72V432J_V%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/17824617&rfr_iscdi=true