Characterization of Metal Ligand Mutants of Tyrosine Hydroxylase:  Insights into the Plasticity of a 2-Histidine-1-Carboxylate Triad

The amino acid ligands to the active site iron in the aromatic amino acid hydroxylase tyrosine hydroxylase are two histidines and a glutamate. This 2-histidine-1-carboxylate motif has been found in a number of other metalloenzymes which catalyze a variety of oxygenase reactions. As a probe of the pl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2003-02, Vol.42 (7), p.2081-2088
Hauptverfasser: Fitzpatrick, Paul F, Ralph, Erik C, Ellis, Holly R, Willmon, Opal J, Daubner, S. Colette
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2088
container_issue 7
container_start_page 2081
container_title Biochemistry (Easton)
container_volume 42
creator Fitzpatrick, Paul F
Ralph, Erik C
Ellis, Holly R
Willmon, Opal J
Daubner, S. Colette
description The amino acid ligands to the active site iron in the aromatic amino acid hydroxylase tyrosine hydroxylase are two histidines and a glutamate. This 2-histidine-1-carboxylate motif has been found in a number of other metalloenzymes which catalyze a variety of oxygenase reactions. As a probe of the plasticity of this metal binding site, each of the ligands in TyrH has been mutated to glutamine, glutamate, or histidine. The H336E and H336Q enzymes show dramatic decreases in iron affinity but retain substantial activity for both tyrosine hydroxylation and tetrahydropterin oxidation. The H331E enzyme shows a lesser decrease in iron affinity and is unable to hydroxylate tyrosine. Instead, this enzyme oxidizes tetrahydropterin in the absence of added tyrosine. The E376H enzyme has no significant activity, while the E376Q enzyme hydroxylates tyrosine at about 0.4% the wild-type rate. When dopamine is bound to either the H336Q or H331E enzymes, the position of the long wavelength charge-transfer absorbance band is consistent with the change in the metal ligand. In contrast, the H336E enzyme does not form a stable binary complex with dopamine, while the E376H and E376Q enzymes catalyze dopamine oxidation.
doi_str_mv 10.1021/bi0271493
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_bi0271493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b73740635</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-a8d2c19895c8bc8c97627c776f31f8796f3d0452d9cad19e725901eb1acda2643</originalsourceid><addsrcrecordid>eNptkD1PHDEQhi1EBMdHkT8QuaFI4cT2fnhNhy4JhzgUBIugs2ZtL2c4dpHtk1gqqkj8TX4JvhyChmo0M887o_dF6CujPxjl7GfjKBcsl9kaGrGCU5JLWayjEaW0JFyWdBNthXCT2pyKfANtMl5IWshyhP6NZ-BBR-vdI0TXd7hv8YmNMMdTdw2dwSeLCF0My3k9-D64zuLJYHz_MMwh2P2Xp2d81AV3PUuQ62KP48zi07SLTrs4LIWAOZm4NDBJTRgZg2_-66PFtXdgdtCXFubB7r7VbXTx53c9npDp38Oj8cGUQJbLSKAyXDNZyUJXja60FCUXWoiyzVhbCZmqoXnBjdRgmLRi6ZPZhoE2wMs820bfV3d1chK8bdW9d3fgB8WoWmap3rNM7LcVe79o7qz5IN_CSwBZAcmZfXjfg79VpchEoerTc3VV_5L12fGlEonfW_Ggg7rpF75LVj95_ArZXov3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterization of Metal Ligand Mutants of Tyrosine Hydroxylase:  Insights into the Plasticity of a 2-Histidine-1-Carboxylate Triad</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Fitzpatrick, Paul F ; Ralph, Erik C ; Ellis, Holly R ; Willmon, Opal J ; Daubner, S. Colette</creator><creatorcontrib>Fitzpatrick, Paul F ; Ralph, Erik C ; Ellis, Holly R ; Willmon, Opal J ; Daubner, S. Colette</creatorcontrib><description>The amino acid ligands to the active site iron in the aromatic amino acid hydroxylase tyrosine hydroxylase are two histidines and a glutamate. This 2-histidine-1-carboxylate motif has been found in a number of other metalloenzymes which catalyze a variety of oxygenase reactions. As a probe of the plasticity of this metal binding site, each of the ligands in TyrH has been mutated to glutamine, glutamate, or histidine. The H336E and H336Q enzymes show dramatic decreases in iron affinity but retain substantial activity for both tyrosine hydroxylation and tetrahydropterin oxidation. The H331E enzyme shows a lesser decrease in iron affinity and is unable to hydroxylate tyrosine. Instead, this enzyme oxidizes tetrahydropterin in the absence of added tyrosine. The E376H enzyme has no significant activity, while the E376Q enzyme hydroxylates tyrosine at about 0.4% the wild-type rate. When dopamine is bound to either the H336Q or H331E enzymes, the position of the long wavelength charge-transfer absorbance band is consistent with the change in the metal ligand. In contrast, the H336E enzyme does not form a stable binary complex with dopamine, while the E376H and E376Q enzymes catalyze dopamine oxidation.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi0271493</identifier><identifier>PMID: 12590596</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Motifs - genetics ; Animals ; Binding Sites - genetics ; Carboxylic Acids - chemistry ; Catalysis ; Dopamine - chemistry ; Glutamic Acid - chemistry ; Glutamic Acid - genetics ; Glutamine - chemistry ; Glutamine - genetics ; Histidine - chemistry ; Histidine - genetics ; Iron - chemistry ; Kinetics ; Ligands ; Mutagenesis, Site-Directed ; Protein Binding - genetics ; Rats ; Tyrosine 3-Monooxygenase - chemistry ; Tyrosine 3-Monooxygenase - genetics</subject><ispartof>Biochemistry (Easton), 2003-02, Vol.42 (7), p.2081-2088</ispartof><rights>Copyright © 2003 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-a8d2c19895c8bc8c97627c776f31f8796f3d0452d9cad19e725901eb1acda2643</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi0271493$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi0271493$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12590596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fitzpatrick, Paul F</creatorcontrib><creatorcontrib>Ralph, Erik C</creatorcontrib><creatorcontrib>Ellis, Holly R</creatorcontrib><creatorcontrib>Willmon, Opal J</creatorcontrib><creatorcontrib>Daubner, S. Colette</creatorcontrib><title>Characterization of Metal Ligand Mutants of Tyrosine Hydroxylase:  Insights into the Plasticity of a 2-Histidine-1-Carboxylate Triad</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The amino acid ligands to the active site iron in the aromatic amino acid hydroxylase tyrosine hydroxylase are two histidines and a glutamate. This 2-histidine-1-carboxylate motif has been found in a number of other metalloenzymes which catalyze a variety of oxygenase reactions. As a probe of the plasticity of this metal binding site, each of the ligands in TyrH has been mutated to glutamine, glutamate, or histidine. The H336E and H336Q enzymes show dramatic decreases in iron affinity but retain substantial activity for both tyrosine hydroxylation and tetrahydropterin oxidation. The H331E enzyme shows a lesser decrease in iron affinity and is unable to hydroxylate tyrosine. Instead, this enzyme oxidizes tetrahydropterin in the absence of added tyrosine. The E376H enzyme has no significant activity, while the E376Q enzyme hydroxylates tyrosine at about 0.4% the wild-type rate. When dopamine is bound to either the H336Q or H331E enzymes, the position of the long wavelength charge-transfer absorbance band is consistent with the change in the metal ligand. In contrast, the H336E enzyme does not form a stable binary complex with dopamine, while the E376H and E376Q enzymes catalyze dopamine oxidation.</description><subject>Amino Acid Motifs - genetics</subject><subject>Animals</subject><subject>Binding Sites - genetics</subject><subject>Carboxylic Acids - chemistry</subject><subject>Catalysis</subject><subject>Dopamine - chemistry</subject><subject>Glutamic Acid - chemistry</subject><subject>Glutamic Acid - genetics</subject><subject>Glutamine - chemistry</subject><subject>Glutamine - genetics</subject><subject>Histidine - chemistry</subject><subject>Histidine - genetics</subject><subject>Iron - chemistry</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Mutagenesis, Site-Directed</subject><subject>Protein Binding - genetics</subject><subject>Rats</subject><subject>Tyrosine 3-Monooxygenase - chemistry</subject><subject>Tyrosine 3-Monooxygenase - genetics</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkD1PHDEQhi1EBMdHkT8QuaFI4cT2fnhNhy4JhzgUBIugs2ZtL2c4dpHtk1gqqkj8TX4JvhyChmo0M887o_dF6CujPxjl7GfjKBcsl9kaGrGCU5JLWayjEaW0JFyWdBNthXCT2pyKfANtMl5IWshyhP6NZ-BBR-vdI0TXd7hv8YmNMMdTdw2dwSeLCF0My3k9-D64zuLJYHz_MMwh2P2Xp2d81AV3PUuQ62KP48zi07SLTrs4LIWAOZm4NDBJTRgZg2_-66PFtXdgdtCXFubB7r7VbXTx53c9npDp38Oj8cGUQJbLSKAyXDNZyUJXja60FCUXWoiyzVhbCZmqoXnBjdRgmLRi6ZPZhoE2wMs820bfV3d1chK8bdW9d3fgB8WoWmap3rNM7LcVe79o7qz5IN_CSwBZAcmZfXjfg79VpchEoerTc3VV_5L12fGlEonfW_Ggg7rpF75LVj95_ArZXov3</recordid><startdate>20030225</startdate><enddate>20030225</enddate><creator>Fitzpatrick, Paul F</creator><creator>Ralph, Erik C</creator><creator>Ellis, Holly R</creator><creator>Willmon, Opal J</creator><creator>Daubner, S. Colette</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030225</creationdate><title>Characterization of Metal Ligand Mutants of Tyrosine Hydroxylase:  Insights into the Plasticity of a 2-Histidine-1-Carboxylate Triad</title><author>Fitzpatrick, Paul F ; Ralph, Erik C ; Ellis, Holly R ; Willmon, Opal J ; Daubner, S. Colette</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-a8d2c19895c8bc8c97627c776f31f8796f3d0452d9cad19e725901eb1acda2643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Motifs - genetics</topic><topic>Animals</topic><topic>Binding Sites - genetics</topic><topic>Carboxylic Acids - chemistry</topic><topic>Catalysis</topic><topic>Dopamine - chemistry</topic><topic>Glutamic Acid - chemistry</topic><topic>Glutamic Acid - genetics</topic><topic>Glutamine - chemistry</topic><topic>Glutamine - genetics</topic><topic>Histidine - chemistry</topic><topic>Histidine - genetics</topic><topic>Iron - chemistry</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Mutagenesis, Site-Directed</topic><topic>Protein Binding - genetics</topic><topic>Rats</topic><topic>Tyrosine 3-Monooxygenase - chemistry</topic><topic>Tyrosine 3-Monooxygenase - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fitzpatrick, Paul F</creatorcontrib><creatorcontrib>Ralph, Erik C</creatorcontrib><creatorcontrib>Ellis, Holly R</creatorcontrib><creatorcontrib>Willmon, Opal J</creatorcontrib><creatorcontrib>Daubner, S. Colette</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fitzpatrick, Paul F</au><au>Ralph, Erik C</au><au>Ellis, Holly R</au><au>Willmon, Opal J</au><au>Daubner, S. Colette</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Metal Ligand Mutants of Tyrosine Hydroxylase:  Insights into the Plasticity of a 2-Histidine-1-Carboxylate Triad</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2003-02-25</date><risdate>2003</risdate><volume>42</volume><issue>7</issue><spage>2081</spage><epage>2088</epage><pages>2081-2088</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>The amino acid ligands to the active site iron in the aromatic amino acid hydroxylase tyrosine hydroxylase are two histidines and a glutamate. This 2-histidine-1-carboxylate motif has been found in a number of other metalloenzymes which catalyze a variety of oxygenase reactions. As a probe of the plasticity of this metal binding site, each of the ligands in TyrH has been mutated to glutamine, glutamate, or histidine. The H336E and H336Q enzymes show dramatic decreases in iron affinity but retain substantial activity for both tyrosine hydroxylation and tetrahydropterin oxidation. The H331E enzyme shows a lesser decrease in iron affinity and is unable to hydroxylate tyrosine. Instead, this enzyme oxidizes tetrahydropterin in the absence of added tyrosine. The E376H enzyme has no significant activity, while the E376Q enzyme hydroxylates tyrosine at about 0.4% the wild-type rate. When dopamine is bound to either the H336Q or H331E enzymes, the position of the long wavelength charge-transfer absorbance band is consistent with the change in the metal ligand. In contrast, the H336E enzyme does not form a stable binary complex with dopamine, while the E376H and E376Q enzymes catalyze dopamine oxidation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>12590596</pmid><doi>10.1021/bi0271493</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2003-02, Vol.42 (7), p.2081-2088
issn 0006-2960
1520-4995
language eng
recordid cdi_crossref_primary_10_1021_bi0271493
source MEDLINE; American Chemical Society Journals
subjects Amino Acid Motifs - genetics
Animals
Binding Sites - genetics
Carboxylic Acids - chemistry
Catalysis
Dopamine - chemistry
Glutamic Acid - chemistry
Glutamic Acid - genetics
Glutamine - chemistry
Glutamine - genetics
Histidine - chemistry
Histidine - genetics
Iron - chemistry
Kinetics
Ligands
Mutagenesis, Site-Directed
Protein Binding - genetics
Rats
Tyrosine 3-Monooxygenase - chemistry
Tyrosine 3-Monooxygenase - genetics
title Characterization of Metal Ligand Mutants of Tyrosine Hydroxylase:  Insights into the Plasticity of a 2-Histidine-1-Carboxylate Triad
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Metal%20Ligand%20Mutants%20of%20Tyrosine%20Hydroxylase:%E2%80%89%20Insights%20into%20the%20Plasticity%20of%20a%202-Histidine-1-Carboxylate%20Triad&rft.jtitle=Biochemistry%20(Easton)&rft.au=Fitzpatrick,%20Paul%20F&rft.date=2003-02-25&rft.volume=42&rft.issue=7&rft.spage=2081&rft.epage=2088&rft.pages=2081-2088&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi0271493&rft_dat=%3Cacs_cross%3Eb73740635%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/12590596&rfr_iscdi=true