Characterization of Metal Ligand Mutants of Tyrosine Hydroxylase: Insights into the Plasticity of a 2-Histidine-1-Carboxylate Triad
The amino acid ligands to the active site iron in the aromatic amino acid hydroxylase tyrosine hydroxylase are two histidines and a glutamate. This 2-histidine-1-carboxylate motif has been found in a number of other metalloenzymes which catalyze a variety of oxygenase reactions. As a probe of the pl...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2003-02, Vol.42 (7), p.2081-2088 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2088 |
---|---|
container_issue | 7 |
container_start_page | 2081 |
container_title | Biochemistry (Easton) |
container_volume | 42 |
creator | Fitzpatrick, Paul F Ralph, Erik C Ellis, Holly R Willmon, Opal J Daubner, S. Colette |
description | The amino acid ligands to the active site iron in the aromatic amino acid hydroxylase tyrosine hydroxylase are two histidines and a glutamate. This 2-histidine-1-carboxylate motif has been found in a number of other metalloenzymes which catalyze a variety of oxygenase reactions. As a probe of the plasticity of this metal binding site, each of the ligands in TyrH has been mutated to glutamine, glutamate, or histidine. The H336E and H336Q enzymes show dramatic decreases in iron affinity but retain substantial activity for both tyrosine hydroxylation and tetrahydropterin oxidation. The H331E enzyme shows a lesser decrease in iron affinity and is unable to hydroxylate tyrosine. Instead, this enzyme oxidizes tetrahydropterin in the absence of added tyrosine. The E376H enzyme has no significant activity, while the E376Q enzyme hydroxylates tyrosine at about 0.4% the wild-type rate. When dopamine is bound to either the H336Q or H331E enzymes, the position of the long wavelength charge-transfer absorbance band is consistent with the change in the metal ligand. In contrast, the H336E enzyme does not form a stable binary complex with dopamine, while the E376H and E376Q enzymes catalyze dopamine oxidation. |
doi_str_mv | 10.1021/bi0271493 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_bi0271493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b73740635</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-a8d2c19895c8bc8c97627c776f31f8796f3d0452d9cad19e725901eb1acda2643</originalsourceid><addsrcrecordid>eNptkD1PHDEQhi1EBMdHkT8QuaFI4cT2fnhNhy4JhzgUBIugs2ZtL2c4dpHtk1gqqkj8TX4JvhyChmo0M887o_dF6CujPxjl7GfjKBcsl9kaGrGCU5JLWayjEaW0JFyWdBNthXCT2pyKfANtMl5IWshyhP6NZ-BBR-vdI0TXd7hv8YmNMMdTdw2dwSeLCF0My3k9-D64zuLJYHz_MMwh2P2Xp2d81AV3PUuQ62KP48zi07SLTrs4LIWAOZm4NDBJTRgZg2_-66PFtXdgdtCXFubB7r7VbXTx53c9npDp38Oj8cGUQJbLSKAyXDNZyUJXja60FCUXWoiyzVhbCZmqoXnBjdRgmLRi6ZPZhoE2wMs820bfV3d1chK8bdW9d3fgB8WoWmap3rNM7LcVe79o7qz5IN_CSwBZAcmZfXjfg79VpchEoerTc3VV_5L12fGlEonfW_Ggg7rpF75LVj95_ArZXov3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Characterization of Metal Ligand Mutants of Tyrosine Hydroxylase: Insights into the Plasticity of a 2-Histidine-1-Carboxylate Triad</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Fitzpatrick, Paul F ; Ralph, Erik C ; Ellis, Holly R ; Willmon, Opal J ; Daubner, S. Colette</creator><creatorcontrib>Fitzpatrick, Paul F ; Ralph, Erik C ; Ellis, Holly R ; Willmon, Opal J ; Daubner, S. Colette</creatorcontrib><description>The amino acid ligands to the active site iron in the aromatic amino acid hydroxylase tyrosine hydroxylase are two histidines and a glutamate. This 2-histidine-1-carboxylate motif has been found in a number of other metalloenzymes which catalyze a variety of oxygenase reactions. As a probe of the plasticity of this metal binding site, each of the ligands in TyrH has been mutated to glutamine, glutamate, or histidine. The H336E and H336Q enzymes show dramatic decreases in iron affinity but retain substantial activity for both tyrosine hydroxylation and tetrahydropterin oxidation. The H331E enzyme shows a lesser decrease in iron affinity and is unable to hydroxylate tyrosine. Instead, this enzyme oxidizes tetrahydropterin in the absence of added tyrosine. The E376H enzyme has no significant activity, while the E376Q enzyme hydroxylates tyrosine at about 0.4% the wild-type rate. When dopamine is bound to either the H336Q or H331E enzymes, the position of the long wavelength charge-transfer absorbance band is consistent with the change in the metal ligand. In contrast, the H336E enzyme does not form a stable binary complex with dopamine, while the E376H and E376Q enzymes catalyze dopamine oxidation.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi0271493</identifier><identifier>PMID: 12590596</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Motifs - genetics ; Animals ; Binding Sites - genetics ; Carboxylic Acids - chemistry ; Catalysis ; Dopamine - chemistry ; Glutamic Acid - chemistry ; Glutamic Acid - genetics ; Glutamine - chemistry ; Glutamine - genetics ; Histidine - chemistry ; Histidine - genetics ; Iron - chemistry ; Kinetics ; Ligands ; Mutagenesis, Site-Directed ; Protein Binding - genetics ; Rats ; Tyrosine 3-Monooxygenase - chemistry ; Tyrosine 3-Monooxygenase - genetics</subject><ispartof>Biochemistry (Easton), 2003-02, Vol.42 (7), p.2081-2088</ispartof><rights>Copyright © 2003 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-a8d2c19895c8bc8c97627c776f31f8796f3d0452d9cad19e725901eb1acda2643</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi0271493$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi0271493$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12590596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fitzpatrick, Paul F</creatorcontrib><creatorcontrib>Ralph, Erik C</creatorcontrib><creatorcontrib>Ellis, Holly R</creatorcontrib><creatorcontrib>Willmon, Opal J</creatorcontrib><creatorcontrib>Daubner, S. Colette</creatorcontrib><title>Characterization of Metal Ligand Mutants of Tyrosine Hydroxylase: Insights into the Plasticity of a 2-Histidine-1-Carboxylate Triad</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The amino acid ligands to the active site iron in the aromatic amino acid hydroxylase tyrosine hydroxylase are two histidines and a glutamate. This 2-histidine-1-carboxylate motif has been found in a number of other metalloenzymes which catalyze a variety of oxygenase reactions. As a probe of the plasticity of this metal binding site, each of the ligands in TyrH has been mutated to glutamine, glutamate, or histidine. The H336E and H336Q enzymes show dramatic decreases in iron affinity but retain substantial activity for both tyrosine hydroxylation and tetrahydropterin oxidation. The H331E enzyme shows a lesser decrease in iron affinity and is unable to hydroxylate tyrosine. Instead, this enzyme oxidizes tetrahydropterin in the absence of added tyrosine. The E376H enzyme has no significant activity, while the E376Q enzyme hydroxylates tyrosine at about 0.4% the wild-type rate. When dopamine is bound to either the H336Q or H331E enzymes, the position of the long wavelength charge-transfer absorbance band is consistent with the change in the metal ligand. In contrast, the H336E enzyme does not form a stable binary complex with dopamine, while the E376H and E376Q enzymes catalyze dopamine oxidation.</description><subject>Amino Acid Motifs - genetics</subject><subject>Animals</subject><subject>Binding Sites - genetics</subject><subject>Carboxylic Acids - chemistry</subject><subject>Catalysis</subject><subject>Dopamine - chemistry</subject><subject>Glutamic Acid - chemistry</subject><subject>Glutamic Acid - genetics</subject><subject>Glutamine - chemistry</subject><subject>Glutamine - genetics</subject><subject>Histidine - chemistry</subject><subject>Histidine - genetics</subject><subject>Iron - chemistry</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Mutagenesis, Site-Directed</subject><subject>Protein Binding - genetics</subject><subject>Rats</subject><subject>Tyrosine 3-Monooxygenase - chemistry</subject><subject>Tyrosine 3-Monooxygenase - genetics</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkD1PHDEQhi1EBMdHkT8QuaFI4cT2fnhNhy4JhzgUBIugs2ZtL2c4dpHtk1gqqkj8TX4JvhyChmo0M887o_dF6CujPxjl7GfjKBcsl9kaGrGCU5JLWayjEaW0JFyWdBNthXCT2pyKfANtMl5IWshyhP6NZ-BBR-vdI0TXd7hv8YmNMMdTdw2dwSeLCF0My3k9-D64zuLJYHz_MMwh2P2Xp2d81AV3PUuQ62KP48zi07SLTrs4LIWAOZm4NDBJTRgZg2_-66PFtXdgdtCXFubB7r7VbXTx53c9npDp38Oj8cGUQJbLSKAyXDNZyUJXja60FCUXWoiyzVhbCZmqoXnBjdRgmLRi6ZPZhoE2wMs820bfV3d1chK8bdW9d3fgB8WoWmap3rNM7LcVe79o7qz5IN_CSwBZAcmZfXjfg79VpchEoerTc3VV_5L12fGlEonfW_Ggg7rpF75LVj95_ArZXov3</recordid><startdate>20030225</startdate><enddate>20030225</enddate><creator>Fitzpatrick, Paul F</creator><creator>Ralph, Erik C</creator><creator>Ellis, Holly R</creator><creator>Willmon, Opal J</creator><creator>Daubner, S. Colette</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030225</creationdate><title>Characterization of Metal Ligand Mutants of Tyrosine Hydroxylase: Insights into the Plasticity of a 2-Histidine-1-Carboxylate Triad</title><author>Fitzpatrick, Paul F ; Ralph, Erik C ; Ellis, Holly R ; Willmon, Opal J ; Daubner, S. Colette</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-a8d2c19895c8bc8c97627c776f31f8796f3d0452d9cad19e725901eb1acda2643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Motifs - genetics</topic><topic>Animals</topic><topic>Binding Sites - genetics</topic><topic>Carboxylic Acids - chemistry</topic><topic>Catalysis</topic><topic>Dopamine - chemistry</topic><topic>Glutamic Acid - chemistry</topic><topic>Glutamic Acid - genetics</topic><topic>Glutamine - chemistry</topic><topic>Glutamine - genetics</topic><topic>Histidine - chemistry</topic><topic>Histidine - genetics</topic><topic>Iron - chemistry</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Mutagenesis, Site-Directed</topic><topic>Protein Binding - genetics</topic><topic>Rats</topic><topic>Tyrosine 3-Monooxygenase - chemistry</topic><topic>Tyrosine 3-Monooxygenase - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fitzpatrick, Paul F</creatorcontrib><creatorcontrib>Ralph, Erik C</creatorcontrib><creatorcontrib>Ellis, Holly R</creatorcontrib><creatorcontrib>Willmon, Opal J</creatorcontrib><creatorcontrib>Daubner, S. Colette</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fitzpatrick, Paul F</au><au>Ralph, Erik C</au><au>Ellis, Holly R</au><au>Willmon, Opal J</au><au>Daubner, S. Colette</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Metal Ligand Mutants of Tyrosine Hydroxylase: Insights into the Plasticity of a 2-Histidine-1-Carboxylate Triad</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2003-02-25</date><risdate>2003</risdate><volume>42</volume><issue>7</issue><spage>2081</spage><epage>2088</epage><pages>2081-2088</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>The amino acid ligands to the active site iron in the aromatic amino acid hydroxylase tyrosine hydroxylase are two histidines and a glutamate. This 2-histidine-1-carboxylate motif has been found in a number of other metalloenzymes which catalyze a variety of oxygenase reactions. As a probe of the plasticity of this metal binding site, each of the ligands in TyrH has been mutated to glutamine, glutamate, or histidine. The H336E and H336Q enzymes show dramatic decreases in iron affinity but retain substantial activity for both tyrosine hydroxylation and tetrahydropterin oxidation. The H331E enzyme shows a lesser decrease in iron affinity and is unable to hydroxylate tyrosine. Instead, this enzyme oxidizes tetrahydropterin in the absence of added tyrosine. The E376H enzyme has no significant activity, while the E376Q enzyme hydroxylates tyrosine at about 0.4% the wild-type rate. When dopamine is bound to either the H336Q or H331E enzymes, the position of the long wavelength charge-transfer absorbance band is consistent with the change in the metal ligand. In contrast, the H336E enzyme does not form a stable binary complex with dopamine, while the E376H and E376Q enzymes catalyze dopamine oxidation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>12590596</pmid><doi>10.1021/bi0271493</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2003-02, Vol.42 (7), p.2081-2088 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_crossref_primary_10_1021_bi0271493 |
source | MEDLINE; American Chemical Society Journals |
subjects | Amino Acid Motifs - genetics Animals Binding Sites - genetics Carboxylic Acids - chemistry Catalysis Dopamine - chemistry Glutamic Acid - chemistry Glutamic Acid - genetics Glutamine - chemistry Glutamine - genetics Histidine - chemistry Histidine - genetics Iron - chemistry Kinetics Ligands Mutagenesis, Site-Directed Protein Binding - genetics Rats Tyrosine 3-Monooxygenase - chemistry Tyrosine 3-Monooxygenase - genetics |
title | Characterization of Metal Ligand Mutants of Tyrosine Hydroxylase: Insights into the Plasticity of a 2-Histidine-1-Carboxylate Triad |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Metal%20Ligand%20Mutants%20of%20Tyrosine%20Hydroxylase:%E2%80%89%20Insights%20into%20the%20Plasticity%20of%20a%202-Histidine-1-Carboxylate%20Triad&rft.jtitle=Biochemistry%20(Easton)&rft.au=Fitzpatrick,%20Paul%20F&rft.date=2003-02-25&rft.volume=42&rft.issue=7&rft.spage=2081&rft.epage=2088&rft.pages=2081-2088&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi0271493&rft_dat=%3Cacs_cross%3Eb73740635%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/12590596&rfr_iscdi=true |