Ability of different chemically modified heparins to potentiate the biological activity of heparin-binding growth factor 1. Lack of correlation with growth factor binding

A range of chemically modified heparins was examined for their ability to bind heparin-binding growth factor 1 (HBGF-1; acidic fibroblast growth factor) and potentiate the in vitro mitogenic and neurotrophic activity of HBGF-1. It was found that carboxyl-reduced heparin bound HBGF-1 as effectively a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1992-07, Vol.31 (28), p.6498-6503
Hauptverfasser: Belford, David A, Hendry, Ian A, Parish, Christopher R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A range of chemically modified heparins was examined for their ability to bind heparin-binding growth factor 1 (HBGF-1; acidic fibroblast growth factor) and potentiate the in vitro mitogenic and neurotrophic activity of HBGF-1. It was found that carboxyl-reduced heparin bound HBGF-1 as effectively as the native heparin molecule. Totally desulfated heparin and N-desulfated heparin lack HBGF-1-binding capacity, and substitution of the exposed amino group with acetyl or acetoacetyl groups only partially restored binding capacity, indicating that N-sulfates only play a limited role in growth factor binding. However, the failure of totally desulfated, N-resulfated heparin to interact with HBGF-1 demonstrated that N-sulfates alone are insufficient and ester sulfates are absolutely essential for HBGF-1 binding. In contrast, the ability of the modified heparins to potentiate the mitogenic activity of HBGF-1 correlated only to a limited extent with their affinity for HBGF-1. Thus, the carboxyl-reduced molecule which displayed similar affinity for HBGF-1 as native heparin was consistently less potent in augmenting mitogenesis. Similarly, the N-acetylated and the N-acetoacetylated species, which had much lower affinity for HBGF-1 than the carboxyl-reduced molecule, conferred similar biological activity to HBGF-1 whereas N-desulfated heparin, which was unable to bind growth factor, potentiated the mitogenic activity of HBGF-1 for both 3T3 and HUVE cells. In contrast, the neurotrophic activity of HBGF-1 was potentiated by modified heparin species which failed to bind HBGF-1 and were without activity in the mitogenic assays.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00143a020