Proton Translocation by Cytochrome c Oxidase Can Take Place without the Conserved Glutamic Acid in Subunit I
A glutamic acid residue in subunit I of the heme−copper oxidases is highly conserved and has been directly implicated in the O2 reduction and proton-pumping mechanisms of these respiratory enzymes. Its mutation to residues other than aspartic acid dramatically inhibits activity, and proton transloca...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2000-07, Vol.39 (27), p.7863-7867 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7867 |
---|---|
container_issue | 27 |
container_start_page | 7863 |
container_title | Biochemistry (Easton) |
container_volume | 39 |
creator | Backgren, Camilla Hummer, Gerhard Wikström, Mårten Puustinen, Anne |
description | A glutamic acid residue in subunit I of the heme−copper oxidases is highly conserved and has been directly implicated in the O2 reduction and proton-pumping mechanisms of these respiratory enzymes. Its mutation to residues other than aspartic acid dramatically inhibits activity, and proton translocation is lost. However, this glutamic acid is replaced by a nonacidic residue in some structurally distant members of the heme−copper oxidases, which have a tyrosine residue in the vicinity. Here, using cytochrome c oxidase from Paracoccus denitrificans, we show that replacement of the glutamic acid and a conserved glycine nearby lowers the catalytic activity to |
doi_str_mv | 10.1021/bi000806b |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_bi000806b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_BMGDH27H_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-db8d82d699582f7abfe745c3d4774fc61c8858b9a0934a11f572ef2ca6d5a2ec3</originalsourceid><addsrcrecordid>eNptkM1OwzAQhC0EgvJz4AWQLxw4BGw3jpMjFGiRQK3UcrY2tqMa0hjZDtC3xygIceC0mp1Pu5pB6JSSS0oYvaotIaQkRb2DRpQzkuVVxXfRKG2LjFUFOUCHIbwkmROR76MDSsqKkoKPULvwLroOrzx0oXUKok2q3uLJNjq19m5jsMLzT6shGDyBRMKrwYsWlMEfNq5dH3FcJ8t1wfh3o_G07SNsrMLXympsO7zs676zET8co70G2mBOfuYRer6_W01m2eN8-jC5fswgpzxmui51yXSRQpSsEVA3RuRcjXUuRN6ogqqy5GVdAanGOVDacMFMwxQUmgMzanyELoa7yrsQvGnkm7cb8FtJifxuTP42ltizgX3r643Rf8ihogRkA2BDNJ-_PvhXWYix4HK1WMqbp-ntjImZFIk_H3hQQb643ncp6j-PvwDbtIGj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Proton Translocation by Cytochrome c Oxidase Can Take Place without the Conserved Glutamic Acid in Subunit I</title><source>ACS Publications</source><source>MEDLINE</source><creator>Backgren, Camilla ; Hummer, Gerhard ; Wikström, Mårten ; Puustinen, Anne</creator><creatorcontrib>Backgren, Camilla ; Hummer, Gerhard ; Wikström, Mårten ; Puustinen, Anne</creatorcontrib><description>A glutamic acid residue in subunit I of the heme−copper oxidases is highly conserved and has been directly implicated in the O2 reduction and proton-pumping mechanisms of these respiratory enzymes. Its mutation to residues other than aspartic acid dramatically inhibits activity, and proton translocation is lost. However, this glutamic acid is replaced by a nonacidic residue in some structurally distant members of the heme−copper oxidases, which have a tyrosine residue in the vicinity. Here, using cytochrome c oxidase from Paracoccus denitrificans, we show that replacement of the glutamic acid and a conserved glycine nearby lowers the catalytic activity to <0.1% of the wild-type value. But if, in addition, a phenylalanine that lies close in the structure is changed to tyrosine, the activity rises more than 100-fold and proton translocation is restored. Molecular dynamics simulations suggest that the tyrosine can support a transient array of water molecules that may be essential for proton transfer in the heme−copper oxidases. Surprisingly, the glutamic acid is thus not indispensable, which puts important constraints on the catalytic mechanism of these enzymes.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi000806b</identifier><identifier>PMID: 10891065</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Conserved Sequence ; Electron Transport Complex IV - chemistry ; Electron Transport Complex IV - genetics ; Electron Transport Complex IV - metabolism ; Glutamic Acid - chemistry ; Hydrogen Bonding ; Ion Transport ; Models, Molecular ; Mutagenesis, Site-Directed ; Paracoccus denitrificans - enzymology ; Protons</subject><ispartof>Biochemistry (Easton), 2000-07, Vol.39 (27), p.7863-7867</ispartof><rights>Copyright © 2000 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a415t-db8d82d699582f7abfe745c3d4774fc61c8858b9a0934a11f572ef2ca6d5a2ec3</citedby><cites>FETCH-LOGICAL-a415t-db8d82d699582f7abfe745c3d4774fc61c8858b9a0934a11f572ef2ca6d5a2ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi000806b$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi000806b$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10891065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Backgren, Camilla</creatorcontrib><creatorcontrib>Hummer, Gerhard</creatorcontrib><creatorcontrib>Wikström, Mårten</creatorcontrib><creatorcontrib>Puustinen, Anne</creatorcontrib><title>Proton Translocation by Cytochrome c Oxidase Can Take Place without the Conserved Glutamic Acid in Subunit I</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>A glutamic acid residue in subunit I of the heme−copper oxidases is highly conserved and has been directly implicated in the O2 reduction and proton-pumping mechanisms of these respiratory enzymes. Its mutation to residues other than aspartic acid dramatically inhibits activity, and proton translocation is lost. However, this glutamic acid is replaced by a nonacidic residue in some structurally distant members of the heme−copper oxidases, which have a tyrosine residue in the vicinity. Here, using cytochrome c oxidase from Paracoccus denitrificans, we show that replacement of the glutamic acid and a conserved glycine nearby lowers the catalytic activity to <0.1% of the wild-type value. But if, in addition, a phenylalanine that lies close in the structure is changed to tyrosine, the activity rises more than 100-fold and proton translocation is restored. Molecular dynamics simulations suggest that the tyrosine can support a transient array of water molecules that may be essential for proton transfer in the heme−copper oxidases. Surprisingly, the glutamic acid is thus not indispensable, which puts important constraints on the catalytic mechanism of these enzymes.</description><subject>Amino Acid Sequence</subject><subject>Conserved Sequence</subject><subject>Electron Transport Complex IV - chemistry</subject><subject>Electron Transport Complex IV - genetics</subject><subject>Electron Transport Complex IV - metabolism</subject><subject>Glutamic Acid - chemistry</subject><subject>Hydrogen Bonding</subject><subject>Ion Transport</subject><subject>Models, Molecular</subject><subject>Mutagenesis, Site-Directed</subject><subject>Paracoccus denitrificans - enzymology</subject><subject>Protons</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkM1OwzAQhC0EgvJz4AWQLxw4BGw3jpMjFGiRQK3UcrY2tqMa0hjZDtC3xygIceC0mp1Pu5pB6JSSS0oYvaotIaQkRb2DRpQzkuVVxXfRKG2LjFUFOUCHIbwkmROR76MDSsqKkoKPULvwLroOrzx0oXUKok2q3uLJNjq19m5jsMLzT6shGDyBRMKrwYsWlMEfNq5dH3FcJ8t1wfh3o_G07SNsrMLXympsO7zs676zET8co70G2mBOfuYRer6_W01m2eN8-jC5fswgpzxmui51yXSRQpSsEVA3RuRcjXUuRN6ogqqy5GVdAanGOVDacMFMwxQUmgMzanyELoa7yrsQvGnkm7cb8FtJifxuTP42ltizgX3r643Rf8ihogRkA2BDNJ-_PvhXWYix4HK1WMqbp-ntjImZFIk_H3hQQb643ncp6j-PvwDbtIGj</recordid><startdate>20000711</startdate><enddate>20000711</enddate><creator>Backgren, Camilla</creator><creator>Hummer, Gerhard</creator><creator>Wikström, Mårten</creator><creator>Puustinen, Anne</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000711</creationdate><title>Proton Translocation by Cytochrome c Oxidase Can Take Place without the Conserved Glutamic Acid in Subunit I</title><author>Backgren, Camilla ; Hummer, Gerhard ; Wikström, Mårten ; Puustinen, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-db8d82d699582f7abfe745c3d4774fc61c8858b9a0934a11f572ef2ca6d5a2ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Amino Acid Sequence</topic><topic>Conserved Sequence</topic><topic>Electron Transport Complex IV - chemistry</topic><topic>Electron Transport Complex IV - genetics</topic><topic>Electron Transport Complex IV - metabolism</topic><topic>Glutamic Acid - chemistry</topic><topic>Hydrogen Bonding</topic><topic>Ion Transport</topic><topic>Models, Molecular</topic><topic>Mutagenesis, Site-Directed</topic><topic>Paracoccus denitrificans - enzymology</topic><topic>Protons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Backgren, Camilla</creatorcontrib><creatorcontrib>Hummer, Gerhard</creatorcontrib><creatorcontrib>Wikström, Mårten</creatorcontrib><creatorcontrib>Puustinen, Anne</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Backgren, Camilla</au><au>Hummer, Gerhard</au><au>Wikström, Mårten</au><au>Puustinen, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton Translocation by Cytochrome c Oxidase Can Take Place without the Conserved Glutamic Acid in Subunit I</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2000-07-11</date><risdate>2000</risdate><volume>39</volume><issue>27</issue><spage>7863</spage><epage>7867</epage><pages>7863-7867</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>A glutamic acid residue in subunit I of the heme−copper oxidases is highly conserved and has been directly implicated in the O2 reduction and proton-pumping mechanisms of these respiratory enzymes. Its mutation to residues other than aspartic acid dramatically inhibits activity, and proton translocation is lost. However, this glutamic acid is replaced by a nonacidic residue in some structurally distant members of the heme−copper oxidases, which have a tyrosine residue in the vicinity. Here, using cytochrome c oxidase from Paracoccus denitrificans, we show that replacement of the glutamic acid and a conserved glycine nearby lowers the catalytic activity to <0.1% of the wild-type value. But if, in addition, a phenylalanine that lies close in the structure is changed to tyrosine, the activity rises more than 100-fold and proton translocation is restored. Molecular dynamics simulations suggest that the tyrosine can support a transient array of water molecules that may be essential for proton transfer in the heme−copper oxidases. Surprisingly, the glutamic acid is thus not indispensable, which puts important constraints on the catalytic mechanism of these enzymes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>10891065</pmid><doi>10.1021/bi000806b</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2000-07, Vol.39 (27), p.7863-7867 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_crossref_primary_10_1021_bi000806b |
source | ACS Publications; MEDLINE |
subjects | Amino Acid Sequence Conserved Sequence Electron Transport Complex IV - chemistry Electron Transport Complex IV - genetics Electron Transport Complex IV - metabolism Glutamic Acid - chemistry Hydrogen Bonding Ion Transport Models, Molecular Mutagenesis, Site-Directed Paracoccus denitrificans - enzymology Protons |
title | Proton Translocation by Cytochrome c Oxidase Can Take Place without the Conserved Glutamic Acid in Subunit I |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A35%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton%20Translocation%20by%20Cytochrome%20c%20Oxidase%20Can%20Take%20Place%20without%20the%20Conserved%20Glutamic%20Acid%20in%20Subunit%20I&rft.jtitle=Biochemistry%20(Easton)&rft.au=Backgren,%20Camilla&rft.date=2000-07-11&rft.volume=39&rft.issue=27&rft.spage=7863&rft.epage=7867&rft.pages=7863-7867&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi000806b&rft_dat=%3Cistex_cross%3Eark_67375_TPS_BMGDH27H_7%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/10891065&rfr_iscdi=true |