Endocytic Mechanisms of Graphene Oxide Nanosheets in Osteoblasts, Hepatocytes and Macrophages

Nano-graphene oxide (GO) has attracted great interest in nanomedicine due to its own intrinsic properties and its possible biomedical applications such as drug delivery, tissue engineering and hyperthermia cancer therapy. However, the toxicity of GO nanosheets is not yet well-known and it is necessa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2014-08, Vol.6 (16), p.13697-13706
Hauptverfasser: Linares, Javier, Matesanz, M. Concepción, Vila, Mercedes, Feito, M. José, Gonçalves, Gil, Vallet-Regí, María, Marques, Paula A. A. P, Portolés, M. Teresa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13706
container_issue 16
container_start_page 13697
container_title ACS applied materials & interfaces
container_volume 6
creator Linares, Javier
Matesanz, M. Concepción
Vila, Mercedes
Feito, M. José
Gonçalves, Gil
Vallet-Regí, María
Marques, Paula A. A. P
Portolés, M. Teresa
description Nano-graphene oxide (GO) has attracted great interest in nanomedicine due to its own intrinsic properties and its possible biomedical applications such as drug delivery, tissue engineering and hyperthermia cancer therapy. However, the toxicity of GO nanosheets is not yet well-known and it is necessary to understand its entry mechanisms into mammalian cells in order to avoid cell damage and human toxicity. In the present study, the cellular uptake of pegylated GO nanosheets of ca. 100 nm labeled with fluorescein isothiocyanate (FITC-PEG-GOs) has been evaluated in the presence of eight inhibitors (colchicine, wortmannin, amiloride, cytochalasin B, cytochalasin D, genistein, phenylarsine oxide and chlorpromazine) that specifically affect different endocytosis mechanisms. Three cell types were chosen for this study: human Saos-2 osteoblasts, human HepG2 hepatocytes and murine RAW-264.7 macrophages. The results show that different mechanisms take part in FITC-PEG-GOs uptake, depending on the characteristics of each cell type. However, macropinocytosis seems to be a general internalization process in the three cell lines analyzed. Besides macropinocytosis, FITC-PEG-GOs can enter through pathways dependent on microtubules in Saos-2 osteoblasts, and through clathrin-dependent mechanisms in HepG2 hepatocytes and RAW-264.7 macrophages. HepG2 cells can also phagocytize FITC-PEG-GOs. These findings help to understand the interactions at the interface of GO nanosheets and mammalian cells and must be considered in further studies focused on their use for biomedical applications.
doi_str_mv 10.1021/am5031598
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_am5031598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d090196740</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-4af1a33cabebfc8112f5ebb337c745d41927ad088b38e338e1fc7021d52b61f43</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRbK0e_AOyFw-C0f1sNkcptRVae9GjhNnNrElpPsim0P57U6o9eRhmDg_vzDyE3HL2xJngz1BqJrlOzBkZ8kSpyAgtzk-zUgNyFcKasbEUTF-SgVBJnMTaDMnXtMpqt-8KR5focqiKUAZaezprocmxQrraFRnSd6jqkCN2gRYVXYUOa7uB0IVHOscGukMGBgpVRpfg2rrJ4RvDNbnwsAl489tH5PN1-jGZR4vV7G3ysohAGt5FCjwHKR1YtN4ZzoXXaK2UsYuVzhRPRAwZM8ZKg7Iv7l3cP55pYcfcKzkiD8fcfnMILfq0aYsS2n3KWXpQlJ4U9ezdkW22tsTsRP456YH7IwAupOt621b96f8E_QDmx23M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Endocytic Mechanisms of Graphene Oxide Nanosheets in Osteoblasts, Hepatocytes and Macrophages</title><source>MEDLINE</source><source>ACS Publications</source><creator>Linares, Javier ; Matesanz, M. Concepción ; Vila, Mercedes ; Feito, M. José ; Gonçalves, Gil ; Vallet-Regí, María ; Marques, Paula A. A. P ; Portolés, M. Teresa</creator><creatorcontrib>Linares, Javier ; Matesanz, M. Concepción ; Vila, Mercedes ; Feito, M. José ; Gonçalves, Gil ; Vallet-Regí, María ; Marques, Paula A. A. P ; Portolés, M. Teresa</creatorcontrib><description>Nano-graphene oxide (GO) has attracted great interest in nanomedicine due to its own intrinsic properties and its possible biomedical applications such as drug delivery, tissue engineering and hyperthermia cancer therapy. However, the toxicity of GO nanosheets is not yet well-known and it is necessary to understand its entry mechanisms into mammalian cells in order to avoid cell damage and human toxicity. In the present study, the cellular uptake of pegylated GO nanosheets of ca. 100 nm labeled with fluorescein isothiocyanate (FITC-PEG-GOs) has been evaluated in the presence of eight inhibitors (colchicine, wortmannin, amiloride, cytochalasin B, cytochalasin D, genistein, phenylarsine oxide and chlorpromazine) that specifically affect different endocytosis mechanisms. Three cell types were chosen for this study: human Saos-2 osteoblasts, human HepG2 hepatocytes and murine RAW-264.7 macrophages. The results show that different mechanisms take part in FITC-PEG-GOs uptake, depending on the characteristics of each cell type. However, macropinocytosis seems to be a general internalization process in the three cell lines analyzed. Besides macropinocytosis, FITC-PEG-GOs can enter through pathways dependent on microtubules in Saos-2 osteoblasts, and through clathrin-dependent mechanisms in HepG2 hepatocytes and RAW-264.7 macrophages. HepG2 cells can also phagocytize FITC-PEG-GOs. These findings help to understand the interactions at the interface of GO nanosheets and mammalian cells and must be considered in further studies focused on their use for biomedical applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am5031598</identifier><identifier>PMID: 24979758</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amiloride - pharmacology ; Animals ; Arsenicals - pharmacology ; Cells, Cultured ; Cytochalasin B - pharmacology ; Cytochalasin D - pharmacology ; Endocytosis - drug effects ; Fluorescein-5-isothiocyanate - metabolism ; Genistein - pharmacology ; Graphite - metabolism ; Hepatocytes - cytology ; Hepatocytes - drug effects ; Hepatocytes - metabolism ; Humans ; Macrophages - cytology ; Macrophages - drug effects ; Macrophages - metabolism ; Mice ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Oxides - metabolism ; Polyethylene Glycols - metabolism</subject><ispartof>ACS applied materials &amp; interfaces, 2014-08, Vol.6 (16), p.13697-13706</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-4af1a33cabebfc8112f5ebb337c745d41927ad088b38e338e1fc7021d52b61f43</citedby><cites>FETCH-LOGICAL-a381t-4af1a33cabebfc8112f5ebb337c745d41927ad088b38e338e1fc7021d52b61f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/am5031598$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/am5031598$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24979758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Linares, Javier</creatorcontrib><creatorcontrib>Matesanz, M. Concepción</creatorcontrib><creatorcontrib>Vila, Mercedes</creatorcontrib><creatorcontrib>Feito, M. José</creatorcontrib><creatorcontrib>Gonçalves, Gil</creatorcontrib><creatorcontrib>Vallet-Regí, María</creatorcontrib><creatorcontrib>Marques, Paula A. A. P</creatorcontrib><creatorcontrib>Portolés, M. Teresa</creatorcontrib><title>Endocytic Mechanisms of Graphene Oxide Nanosheets in Osteoblasts, Hepatocytes and Macrophages</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Nano-graphene oxide (GO) has attracted great interest in nanomedicine due to its own intrinsic properties and its possible biomedical applications such as drug delivery, tissue engineering and hyperthermia cancer therapy. However, the toxicity of GO nanosheets is not yet well-known and it is necessary to understand its entry mechanisms into mammalian cells in order to avoid cell damage and human toxicity. In the present study, the cellular uptake of pegylated GO nanosheets of ca. 100 nm labeled with fluorescein isothiocyanate (FITC-PEG-GOs) has been evaluated in the presence of eight inhibitors (colchicine, wortmannin, amiloride, cytochalasin B, cytochalasin D, genistein, phenylarsine oxide and chlorpromazine) that specifically affect different endocytosis mechanisms. Three cell types were chosen for this study: human Saos-2 osteoblasts, human HepG2 hepatocytes and murine RAW-264.7 macrophages. The results show that different mechanisms take part in FITC-PEG-GOs uptake, depending on the characteristics of each cell type. However, macropinocytosis seems to be a general internalization process in the three cell lines analyzed. Besides macropinocytosis, FITC-PEG-GOs can enter through pathways dependent on microtubules in Saos-2 osteoblasts, and through clathrin-dependent mechanisms in HepG2 hepatocytes and RAW-264.7 macrophages. HepG2 cells can also phagocytize FITC-PEG-GOs. These findings help to understand the interactions at the interface of GO nanosheets and mammalian cells and must be considered in further studies focused on their use for biomedical applications.</description><subject>Amiloride - pharmacology</subject><subject>Animals</subject><subject>Arsenicals - pharmacology</subject><subject>Cells, Cultured</subject><subject>Cytochalasin B - pharmacology</subject><subject>Cytochalasin D - pharmacology</subject><subject>Endocytosis - drug effects</subject><subject>Fluorescein-5-isothiocyanate - metabolism</subject><subject>Genistein - pharmacology</subject><subject>Graphite - metabolism</subject><subject>Hepatocytes - cytology</subject><subject>Hepatocytes - drug effects</subject><subject>Hepatocytes - metabolism</subject><subject>Humans</subject><subject>Macrophages - cytology</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>Mice</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Oxides - metabolism</subject><subject>Polyethylene Glycols - metabolism</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1Lw0AQhhdRbK0e_AOyFw-C0f1sNkcptRVae9GjhNnNrElpPsim0P57U6o9eRhmDg_vzDyE3HL2xJngz1BqJrlOzBkZ8kSpyAgtzk-zUgNyFcKasbEUTF-SgVBJnMTaDMnXtMpqt-8KR5focqiKUAZaezprocmxQrraFRnSd6jqkCN2gRYVXYUOa7uB0IVHOscGukMGBgpVRpfg2rrJ4RvDNbnwsAl489tH5PN1-jGZR4vV7G3ysohAGt5FCjwHKR1YtN4ZzoXXaK2UsYuVzhRPRAwZM8ZKg7Iv7l3cP55pYcfcKzkiD8fcfnMILfq0aYsS2n3KWXpQlJ4U9ezdkW22tsTsRP456YH7IwAupOt621b96f8E_QDmx23M</recordid><startdate>20140827</startdate><enddate>20140827</enddate><creator>Linares, Javier</creator><creator>Matesanz, M. Concepción</creator><creator>Vila, Mercedes</creator><creator>Feito, M. José</creator><creator>Gonçalves, Gil</creator><creator>Vallet-Regí, María</creator><creator>Marques, Paula A. A. P</creator><creator>Portolés, M. Teresa</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140827</creationdate><title>Endocytic Mechanisms of Graphene Oxide Nanosheets in Osteoblasts, Hepatocytes and Macrophages</title><author>Linares, Javier ; Matesanz, M. Concepción ; Vila, Mercedes ; Feito, M. José ; Gonçalves, Gil ; Vallet-Regí, María ; Marques, Paula A. A. P ; Portolés, M. Teresa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-4af1a33cabebfc8112f5ebb337c745d41927ad088b38e338e1fc7021d52b61f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amiloride - pharmacology</topic><topic>Animals</topic><topic>Arsenicals - pharmacology</topic><topic>Cells, Cultured</topic><topic>Cytochalasin B - pharmacology</topic><topic>Cytochalasin D - pharmacology</topic><topic>Endocytosis - drug effects</topic><topic>Fluorescein-5-isothiocyanate - metabolism</topic><topic>Genistein - pharmacology</topic><topic>Graphite - metabolism</topic><topic>Hepatocytes - cytology</topic><topic>Hepatocytes - drug effects</topic><topic>Hepatocytes - metabolism</topic><topic>Humans</topic><topic>Macrophages - cytology</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>Mice</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Oxides - metabolism</topic><topic>Polyethylene Glycols - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linares, Javier</creatorcontrib><creatorcontrib>Matesanz, M. Concepción</creatorcontrib><creatorcontrib>Vila, Mercedes</creatorcontrib><creatorcontrib>Feito, M. José</creatorcontrib><creatorcontrib>Gonçalves, Gil</creatorcontrib><creatorcontrib>Vallet-Regí, María</creatorcontrib><creatorcontrib>Marques, Paula A. A. P</creatorcontrib><creatorcontrib>Portolés, M. Teresa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linares, Javier</au><au>Matesanz, M. Concepción</au><au>Vila, Mercedes</au><au>Feito, M. José</au><au>Gonçalves, Gil</au><au>Vallet-Regí, María</au><au>Marques, Paula A. A. P</au><au>Portolés, M. Teresa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endocytic Mechanisms of Graphene Oxide Nanosheets in Osteoblasts, Hepatocytes and Macrophages</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2014-08-27</date><risdate>2014</risdate><volume>6</volume><issue>16</issue><spage>13697</spage><epage>13706</epage><pages>13697-13706</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Nano-graphene oxide (GO) has attracted great interest in nanomedicine due to its own intrinsic properties and its possible biomedical applications such as drug delivery, tissue engineering and hyperthermia cancer therapy. However, the toxicity of GO nanosheets is not yet well-known and it is necessary to understand its entry mechanisms into mammalian cells in order to avoid cell damage and human toxicity. In the present study, the cellular uptake of pegylated GO nanosheets of ca. 100 nm labeled with fluorescein isothiocyanate (FITC-PEG-GOs) has been evaluated in the presence of eight inhibitors (colchicine, wortmannin, amiloride, cytochalasin B, cytochalasin D, genistein, phenylarsine oxide and chlorpromazine) that specifically affect different endocytosis mechanisms. Three cell types were chosen for this study: human Saos-2 osteoblasts, human HepG2 hepatocytes and murine RAW-264.7 macrophages. The results show that different mechanisms take part in FITC-PEG-GOs uptake, depending on the characteristics of each cell type. However, macropinocytosis seems to be a general internalization process in the three cell lines analyzed. Besides macropinocytosis, FITC-PEG-GOs can enter through pathways dependent on microtubules in Saos-2 osteoblasts, and through clathrin-dependent mechanisms in HepG2 hepatocytes and RAW-264.7 macrophages. HepG2 cells can also phagocytize FITC-PEG-GOs. These findings help to understand the interactions at the interface of GO nanosheets and mammalian cells and must be considered in further studies focused on their use for biomedical applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24979758</pmid><doi>10.1021/am5031598</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2014-08, Vol.6 (16), p.13697-13706
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_am5031598
source MEDLINE; ACS Publications
subjects Amiloride - pharmacology
Animals
Arsenicals - pharmacology
Cells, Cultured
Cytochalasin B - pharmacology
Cytochalasin D - pharmacology
Endocytosis - drug effects
Fluorescein-5-isothiocyanate - metabolism
Genistein - pharmacology
Graphite - metabolism
Hepatocytes - cytology
Hepatocytes - drug effects
Hepatocytes - metabolism
Humans
Macrophages - cytology
Macrophages - drug effects
Macrophages - metabolism
Mice
Nanoparticles - chemistry
Nanoparticles - ultrastructure
Osteoblasts - cytology
Osteoblasts - drug effects
Osteoblasts - metabolism
Oxides - metabolism
Polyethylene Glycols - metabolism
title Endocytic Mechanisms of Graphene Oxide Nanosheets in Osteoblasts, Hepatocytes and Macrophages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endocytic%20Mechanisms%20of%20Graphene%20Oxide%20Nanosheets%20in%20Osteoblasts,%20Hepatocytes%20and%20Macrophages&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Linares,%20Javier&rft.date=2014-08-27&rft.volume=6&rft.issue=16&rft.spage=13697&rft.epage=13706&rft.pages=13697-13706&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am5031598&rft_dat=%3Cacs_cross%3Ed090196740%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24979758&rfr_iscdi=true