Endocytic Mechanisms of Graphene Oxide Nanosheets in Osteoblasts, Hepatocytes and Macrophages
Nano-graphene oxide (GO) has attracted great interest in nanomedicine due to its own intrinsic properties and its possible biomedical applications such as drug delivery, tissue engineering and hyperthermia cancer therapy. However, the toxicity of GO nanosheets is not yet well-known and it is necessa...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2014-08, Vol.6 (16), p.13697-13706 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13706 |
---|---|
container_issue | 16 |
container_start_page | 13697 |
container_title | ACS applied materials & interfaces |
container_volume | 6 |
creator | Linares, Javier Matesanz, M. Concepción Vila, Mercedes Feito, M. José Gonçalves, Gil Vallet-Regí, María Marques, Paula A. A. P Portolés, M. Teresa |
description | Nano-graphene oxide (GO) has attracted great interest in nanomedicine due to its own intrinsic properties and its possible biomedical applications such as drug delivery, tissue engineering and hyperthermia cancer therapy. However, the toxicity of GO nanosheets is not yet well-known and it is necessary to understand its entry mechanisms into mammalian cells in order to avoid cell damage and human toxicity. In the present study, the cellular uptake of pegylated GO nanosheets of ca. 100 nm labeled with fluorescein isothiocyanate (FITC-PEG-GOs) has been evaluated in the presence of eight inhibitors (colchicine, wortmannin, amiloride, cytochalasin B, cytochalasin D, genistein, phenylarsine oxide and chlorpromazine) that specifically affect different endocytosis mechanisms. Three cell types were chosen for this study: human Saos-2 osteoblasts, human HepG2 hepatocytes and murine RAW-264.7 macrophages. The results show that different mechanisms take part in FITC-PEG-GOs uptake, depending on the characteristics of each cell type. However, macropinocytosis seems to be a general internalization process in the three cell lines analyzed. Besides macropinocytosis, FITC-PEG-GOs can enter through pathways dependent on microtubules in Saos-2 osteoblasts, and through clathrin-dependent mechanisms in HepG2 hepatocytes and RAW-264.7 macrophages. HepG2 cells can also phagocytize FITC-PEG-GOs. These findings help to understand the interactions at the interface of GO nanosheets and mammalian cells and must be considered in further studies focused on their use for biomedical applications. |
doi_str_mv | 10.1021/am5031598 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_am5031598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d090196740</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-4af1a33cabebfc8112f5ebb337c745d41927ad088b38e338e1fc7021d52b61f43</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRbK0e_AOyFw-C0f1sNkcptRVae9GjhNnNrElpPsim0P57U6o9eRhmDg_vzDyE3HL2xJngz1BqJrlOzBkZ8kSpyAgtzk-zUgNyFcKasbEUTF-SgVBJnMTaDMnXtMpqt-8KR5focqiKUAZaezprocmxQrraFRnSd6jqkCN2gRYVXYUOa7uB0IVHOscGukMGBgpVRpfg2rrJ4RvDNbnwsAl489tH5PN1-jGZR4vV7G3ysohAGt5FCjwHKR1YtN4ZzoXXaK2UsYuVzhRPRAwZM8ZKg7Iv7l3cP55pYcfcKzkiD8fcfnMILfq0aYsS2n3KWXpQlJ4U9ezdkW22tsTsRP456YH7IwAupOt621b96f8E_QDmx23M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Endocytic Mechanisms of Graphene Oxide Nanosheets in Osteoblasts, Hepatocytes and Macrophages</title><source>MEDLINE</source><source>ACS Publications</source><creator>Linares, Javier ; Matesanz, M. Concepción ; Vila, Mercedes ; Feito, M. José ; Gonçalves, Gil ; Vallet-Regí, María ; Marques, Paula A. A. P ; Portolés, M. Teresa</creator><creatorcontrib>Linares, Javier ; Matesanz, M. Concepción ; Vila, Mercedes ; Feito, M. José ; Gonçalves, Gil ; Vallet-Regí, María ; Marques, Paula A. A. P ; Portolés, M. Teresa</creatorcontrib><description>Nano-graphene oxide (GO) has attracted great interest in nanomedicine due to its own intrinsic properties and its possible biomedical applications such as drug delivery, tissue engineering and hyperthermia cancer therapy. However, the toxicity of GO nanosheets is not yet well-known and it is necessary to understand its entry mechanisms into mammalian cells in order to avoid cell damage and human toxicity. In the present study, the cellular uptake of pegylated GO nanosheets of ca. 100 nm labeled with fluorescein isothiocyanate (FITC-PEG-GOs) has been evaluated in the presence of eight inhibitors (colchicine, wortmannin, amiloride, cytochalasin B, cytochalasin D, genistein, phenylarsine oxide and chlorpromazine) that specifically affect different endocytosis mechanisms. Three cell types were chosen for this study: human Saos-2 osteoblasts, human HepG2 hepatocytes and murine RAW-264.7 macrophages. The results show that different mechanisms take part in FITC-PEG-GOs uptake, depending on the characteristics of each cell type. However, macropinocytosis seems to be a general internalization process in the three cell lines analyzed. Besides macropinocytosis, FITC-PEG-GOs can enter through pathways dependent on microtubules in Saos-2 osteoblasts, and through clathrin-dependent mechanisms in HepG2 hepatocytes and RAW-264.7 macrophages. HepG2 cells can also phagocytize FITC-PEG-GOs. These findings help to understand the interactions at the interface of GO nanosheets and mammalian cells and must be considered in further studies focused on their use for biomedical applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am5031598</identifier><identifier>PMID: 24979758</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amiloride - pharmacology ; Animals ; Arsenicals - pharmacology ; Cells, Cultured ; Cytochalasin B - pharmacology ; Cytochalasin D - pharmacology ; Endocytosis - drug effects ; Fluorescein-5-isothiocyanate - metabolism ; Genistein - pharmacology ; Graphite - metabolism ; Hepatocytes - cytology ; Hepatocytes - drug effects ; Hepatocytes - metabolism ; Humans ; Macrophages - cytology ; Macrophages - drug effects ; Macrophages - metabolism ; Mice ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Oxides - metabolism ; Polyethylene Glycols - metabolism</subject><ispartof>ACS applied materials & interfaces, 2014-08, Vol.6 (16), p.13697-13706</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-4af1a33cabebfc8112f5ebb337c745d41927ad088b38e338e1fc7021d52b61f43</citedby><cites>FETCH-LOGICAL-a381t-4af1a33cabebfc8112f5ebb337c745d41927ad088b38e338e1fc7021d52b61f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/am5031598$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/am5031598$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24979758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Linares, Javier</creatorcontrib><creatorcontrib>Matesanz, M. Concepción</creatorcontrib><creatorcontrib>Vila, Mercedes</creatorcontrib><creatorcontrib>Feito, M. José</creatorcontrib><creatorcontrib>Gonçalves, Gil</creatorcontrib><creatorcontrib>Vallet-Regí, María</creatorcontrib><creatorcontrib>Marques, Paula A. A. P</creatorcontrib><creatorcontrib>Portolés, M. Teresa</creatorcontrib><title>Endocytic Mechanisms of Graphene Oxide Nanosheets in Osteoblasts, Hepatocytes and Macrophages</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Nano-graphene oxide (GO) has attracted great interest in nanomedicine due to its own intrinsic properties and its possible biomedical applications such as drug delivery, tissue engineering and hyperthermia cancer therapy. However, the toxicity of GO nanosheets is not yet well-known and it is necessary to understand its entry mechanisms into mammalian cells in order to avoid cell damage and human toxicity. In the present study, the cellular uptake of pegylated GO nanosheets of ca. 100 nm labeled with fluorescein isothiocyanate (FITC-PEG-GOs) has been evaluated in the presence of eight inhibitors (colchicine, wortmannin, amiloride, cytochalasin B, cytochalasin D, genistein, phenylarsine oxide and chlorpromazine) that specifically affect different endocytosis mechanisms. Three cell types were chosen for this study: human Saos-2 osteoblasts, human HepG2 hepatocytes and murine RAW-264.7 macrophages. The results show that different mechanisms take part in FITC-PEG-GOs uptake, depending on the characteristics of each cell type. However, macropinocytosis seems to be a general internalization process in the three cell lines analyzed. Besides macropinocytosis, FITC-PEG-GOs can enter through pathways dependent on microtubules in Saos-2 osteoblasts, and through clathrin-dependent mechanisms in HepG2 hepatocytes and RAW-264.7 macrophages. HepG2 cells can also phagocytize FITC-PEG-GOs. These findings help to understand the interactions at the interface of GO nanosheets and mammalian cells and must be considered in further studies focused on their use for biomedical applications.</description><subject>Amiloride - pharmacology</subject><subject>Animals</subject><subject>Arsenicals - pharmacology</subject><subject>Cells, Cultured</subject><subject>Cytochalasin B - pharmacology</subject><subject>Cytochalasin D - pharmacology</subject><subject>Endocytosis - drug effects</subject><subject>Fluorescein-5-isothiocyanate - metabolism</subject><subject>Genistein - pharmacology</subject><subject>Graphite - metabolism</subject><subject>Hepatocytes - cytology</subject><subject>Hepatocytes - drug effects</subject><subject>Hepatocytes - metabolism</subject><subject>Humans</subject><subject>Macrophages - cytology</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>Mice</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Oxides - metabolism</subject><subject>Polyethylene Glycols - metabolism</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1Lw0AQhhdRbK0e_AOyFw-C0f1sNkcptRVae9GjhNnNrElpPsim0P57U6o9eRhmDg_vzDyE3HL2xJngz1BqJrlOzBkZ8kSpyAgtzk-zUgNyFcKasbEUTF-SgVBJnMTaDMnXtMpqt-8KR5focqiKUAZaezprocmxQrraFRnSd6jqkCN2gRYVXYUOa7uB0IVHOscGukMGBgpVRpfg2rrJ4RvDNbnwsAl489tH5PN1-jGZR4vV7G3ysohAGt5FCjwHKR1YtN4ZzoXXaK2UsYuVzhRPRAwZM8ZKg7Iv7l3cP55pYcfcKzkiD8fcfnMILfq0aYsS2n3KWXpQlJ4U9ezdkW22tsTsRP456YH7IwAupOt621b96f8E_QDmx23M</recordid><startdate>20140827</startdate><enddate>20140827</enddate><creator>Linares, Javier</creator><creator>Matesanz, M. Concepción</creator><creator>Vila, Mercedes</creator><creator>Feito, M. José</creator><creator>Gonçalves, Gil</creator><creator>Vallet-Regí, María</creator><creator>Marques, Paula A. A. P</creator><creator>Portolés, M. Teresa</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140827</creationdate><title>Endocytic Mechanisms of Graphene Oxide Nanosheets in Osteoblasts, Hepatocytes and Macrophages</title><author>Linares, Javier ; Matesanz, M. Concepción ; Vila, Mercedes ; Feito, M. José ; Gonçalves, Gil ; Vallet-Regí, María ; Marques, Paula A. A. P ; Portolés, M. Teresa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-4af1a33cabebfc8112f5ebb337c745d41927ad088b38e338e1fc7021d52b61f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amiloride - pharmacology</topic><topic>Animals</topic><topic>Arsenicals - pharmacology</topic><topic>Cells, Cultured</topic><topic>Cytochalasin B - pharmacology</topic><topic>Cytochalasin D - pharmacology</topic><topic>Endocytosis - drug effects</topic><topic>Fluorescein-5-isothiocyanate - metabolism</topic><topic>Genistein - pharmacology</topic><topic>Graphite - metabolism</topic><topic>Hepatocytes - cytology</topic><topic>Hepatocytes - drug effects</topic><topic>Hepatocytes - metabolism</topic><topic>Humans</topic><topic>Macrophages - cytology</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>Mice</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Oxides - metabolism</topic><topic>Polyethylene Glycols - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linares, Javier</creatorcontrib><creatorcontrib>Matesanz, M. Concepción</creatorcontrib><creatorcontrib>Vila, Mercedes</creatorcontrib><creatorcontrib>Feito, M. José</creatorcontrib><creatorcontrib>Gonçalves, Gil</creatorcontrib><creatorcontrib>Vallet-Regí, María</creatorcontrib><creatorcontrib>Marques, Paula A. A. P</creatorcontrib><creatorcontrib>Portolés, M. Teresa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linares, Javier</au><au>Matesanz, M. Concepción</au><au>Vila, Mercedes</au><au>Feito, M. José</au><au>Gonçalves, Gil</au><au>Vallet-Regí, María</au><au>Marques, Paula A. A. P</au><au>Portolés, M. Teresa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endocytic Mechanisms of Graphene Oxide Nanosheets in Osteoblasts, Hepatocytes and Macrophages</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2014-08-27</date><risdate>2014</risdate><volume>6</volume><issue>16</issue><spage>13697</spage><epage>13706</epage><pages>13697-13706</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Nano-graphene oxide (GO) has attracted great interest in nanomedicine due to its own intrinsic properties and its possible biomedical applications such as drug delivery, tissue engineering and hyperthermia cancer therapy. However, the toxicity of GO nanosheets is not yet well-known and it is necessary to understand its entry mechanisms into mammalian cells in order to avoid cell damage and human toxicity. In the present study, the cellular uptake of pegylated GO nanosheets of ca. 100 nm labeled with fluorescein isothiocyanate (FITC-PEG-GOs) has been evaluated in the presence of eight inhibitors (colchicine, wortmannin, amiloride, cytochalasin B, cytochalasin D, genistein, phenylarsine oxide and chlorpromazine) that specifically affect different endocytosis mechanisms. Three cell types were chosen for this study: human Saos-2 osteoblasts, human HepG2 hepatocytes and murine RAW-264.7 macrophages. The results show that different mechanisms take part in FITC-PEG-GOs uptake, depending on the characteristics of each cell type. However, macropinocytosis seems to be a general internalization process in the three cell lines analyzed. Besides macropinocytosis, FITC-PEG-GOs can enter through pathways dependent on microtubules in Saos-2 osteoblasts, and through clathrin-dependent mechanisms in HepG2 hepatocytes and RAW-264.7 macrophages. HepG2 cells can also phagocytize FITC-PEG-GOs. These findings help to understand the interactions at the interface of GO nanosheets and mammalian cells and must be considered in further studies focused on their use for biomedical applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24979758</pmid><doi>10.1021/am5031598</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2014-08, Vol.6 (16), p.13697-13706 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_am5031598 |
source | MEDLINE; ACS Publications |
subjects | Amiloride - pharmacology Animals Arsenicals - pharmacology Cells, Cultured Cytochalasin B - pharmacology Cytochalasin D - pharmacology Endocytosis - drug effects Fluorescein-5-isothiocyanate - metabolism Genistein - pharmacology Graphite - metabolism Hepatocytes - cytology Hepatocytes - drug effects Hepatocytes - metabolism Humans Macrophages - cytology Macrophages - drug effects Macrophages - metabolism Mice Nanoparticles - chemistry Nanoparticles - ultrastructure Osteoblasts - cytology Osteoblasts - drug effects Osteoblasts - metabolism Oxides - metabolism Polyethylene Glycols - metabolism |
title | Endocytic Mechanisms of Graphene Oxide Nanosheets in Osteoblasts, Hepatocytes and Macrophages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endocytic%20Mechanisms%20of%20Graphene%20Oxide%20Nanosheets%20in%20Osteoblasts,%20Hepatocytes%20and%20Macrophages&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Linares,%20Javier&rft.date=2014-08-27&rft.volume=6&rft.issue=16&rft.spage=13697&rft.epage=13706&rft.pages=13697-13706&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am5031598&rft_dat=%3Cacs_cross%3Ed090196740%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24979758&rfr_iscdi=true |