Nanotopographical Manipulation of Focal Adhesion Formation for Enhanced Differentiation of Human Neural Stem Cells

Manipulating neural stem cell (NSC) fate is of great importance for improving the therapeutic efficacy of NSCs to treat neurodegenerative disorders. Biophysical cues, in addition to biochemical factors, regulate NSC phenotype and function. In this study, we assessed the extent to which surface nanot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2013-11, Vol.5 (21), p.10529-10540
Hauptverfasser: Yang, Kisuk, Jung, Kyuhwan, Ko, Eunkyung, Kim, Jin, Park, Kook In, Kim, Jinseok, Cho, Seung-Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10540
container_issue 21
container_start_page 10529
container_title ACS applied materials & interfaces
container_volume 5
creator Yang, Kisuk
Jung, Kyuhwan
Ko, Eunkyung
Kim, Jin
Park, Kook In
Kim, Jinseok
Cho, Seung-Woo
description Manipulating neural stem cell (NSC) fate is of great importance for improving the therapeutic efficacy of NSCs to treat neurodegenerative disorders. Biophysical cues, in addition to biochemical factors, regulate NSC phenotype and function. In this study, we assessed the extent to which surface nanotopography of culture substrates modulates human NSC (hNSC) differentiation. Fibronectin-coated polymer substrates with diverse nanoscale shapes (groove and pillar) and dimensions (ranging from 300 to 1500 nm groove width and pillar gap) were used to investigate the effects of topographical cues on hNSC morphology, alignment, focal adhesion, and differentiation. The majority of nanopatterned substrates induced substantial changes in cellular morphology and alignment along the patterned shapes, leading to alterations in focal adhesion and F-actin reorganization. Certain types of nanopatterned substrates, in particular the ones with small nanostructures (e.g., 300–300 nm groove ridges and 300–300 nm pillar diameter gaps), were found to effectively enhance focal adhesion complex development. Consequently, these substrates enhanced hNSC differentiation toward neurons and astrocytes. Nanotopographical-induced formation of focal adhesions in hNSCs activates integrin-mediated mechanotransduction and intracellular signaling pathways such as MEK-ERK, which may ultimately promote gene expression related to NSC differentiation. This strategy of manipulating matrix surface topography could be applied to develop culture substrates and tissue engineered scaffolds that improve the efficacy of NSC therapeutics.
doi_str_mv 10.1021/am402156f
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_am402156f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b913008428</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-3e8a4d7d284a26df31cd8976789d2c91c8def399270db7ffb3326f9d9c20a26a3</originalsourceid><addsrcrecordid>eNptkDlPw0AQhVcIREKg4A8gNxQUhj187JZRDoIUQgHU1mQP4sjetXbtgn-PI4Mrqjea-d7T6CF0S_AjwZQ8QZ30kmbmDE2JSJKY05Sej3OSTNBVCEeMM0ZxeokmlHEhUp5Okd-Bda1r3JeH5lBKqKJXsGXTVdCWzkbORGt32s7VQYfTZu18PdyM89HKHsBKraJlaYz22rblaNx0Ndhopzvf-99bXUcLXVXhGl0YqIK--dUZ-lyvPhabePv2_LKYb2NgnLQx0xwSlSvKE6CZMoxIxUWe5VwoKgWRXGnDhKA5VvvcmD1jNDNCCUlxbwA2Qw9DrvQuBK9N0fiyBv9dEFyceivG3nr2bmCbbl9rNZJ_RfXA_QCADMXRdd72r_8T9AMiHnX-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanotopographical Manipulation of Focal Adhesion Formation for Enhanced Differentiation of Human Neural Stem Cells</title><source>MEDLINE</source><source>ACS Publications</source><creator>Yang, Kisuk ; Jung, Kyuhwan ; Ko, Eunkyung ; Kim, Jin ; Park, Kook In ; Kim, Jinseok ; Cho, Seung-Woo</creator><creatorcontrib>Yang, Kisuk ; Jung, Kyuhwan ; Ko, Eunkyung ; Kim, Jin ; Park, Kook In ; Kim, Jinseok ; Cho, Seung-Woo</creatorcontrib><description>Manipulating neural stem cell (NSC) fate is of great importance for improving the therapeutic efficacy of NSCs to treat neurodegenerative disorders. Biophysical cues, in addition to biochemical factors, regulate NSC phenotype and function. In this study, we assessed the extent to which surface nanotopography of culture substrates modulates human NSC (hNSC) differentiation. Fibronectin-coated polymer substrates with diverse nanoscale shapes (groove and pillar) and dimensions (ranging from 300 to 1500 nm groove width and pillar gap) were used to investigate the effects of topographical cues on hNSC morphology, alignment, focal adhesion, and differentiation. The majority of nanopatterned substrates induced substantial changes in cellular morphology and alignment along the patterned shapes, leading to alterations in focal adhesion and F-actin reorganization. Certain types of nanopatterned substrates, in particular the ones with small nanostructures (e.g., 300–300 nm groove ridges and 300–300 nm pillar diameter gaps), were found to effectively enhance focal adhesion complex development. Consequently, these substrates enhanced hNSC differentiation toward neurons and astrocytes. Nanotopographical-induced formation of focal adhesions in hNSCs activates integrin-mediated mechanotransduction and intracellular signaling pathways such as MEK-ERK, which may ultimately promote gene expression related to NSC differentiation. This strategy of manipulating matrix surface topography could be applied to develop culture substrates and tissue engineered scaffolds that improve the efficacy of NSC therapeutics.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am402156f</identifier><identifier>PMID: 23899585</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cell Differentiation - drug effects ; Coated Materials, Biocompatible - chemistry ; Coated Materials, Biocompatible - pharmacology ; Fibronectins - chemistry ; Focal Adhesions - drug effects ; Humans ; Nanotechnology - methods ; Neural Stem Cells - cytology ; Neurodegenerative Diseases - therapy ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Polymers - chemistry ; Polymers - pharmacology</subject><ispartof>ACS applied materials &amp; interfaces, 2013-11, Vol.5 (21), p.10529-10540</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-3e8a4d7d284a26df31cd8976789d2c91c8def399270db7ffb3326f9d9c20a26a3</citedby><cites>FETCH-LOGICAL-a381t-3e8a4d7d284a26df31cd8976789d2c91c8def399270db7ffb3326f9d9c20a26a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/am402156f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/am402156f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23899585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Kisuk</creatorcontrib><creatorcontrib>Jung, Kyuhwan</creatorcontrib><creatorcontrib>Ko, Eunkyung</creatorcontrib><creatorcontrib>Kim, Jin</creatorcontrib><creatorcontrib>Park, Kook In</creatorcontrib><creatorcontrib>Kim, Jinseok</creatorcontrib><creatorcontrib>Cho, Seung-Woo</creatorcontrib><title>Nanotopographical Manipulation of Focal Adhesion Formation for Enhanced Differentiation of Human Neural Stem Cells</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Manipulating neural stem cell (NSC) fate is of great importance for improving the therapeutic efficacy of NSCs to treat neurodegenerative disorders. Biophysical cues, in addition to biochemical factors, regulate NSC phenotype and function. In this study, we assessed the extent to which surface nanotopography of culture substrates modulates human NSC (hNSC) differentiation. Fibronectin-coated polymer substrates with diverse nanoscale shapes (groove and pillar) and dimensions (ranging from 300 to 1500 nm groove width and pillar gap) were used to investigate the effects of topographical cues on hNSC morphology, alignment, focal adhesion, and differentiation. The majority of nanopatterned substrates induced substantial changes in cellular morphology and alignment along the patterned shapes, leading to alterations in focal adhesion and F-actin reorganization. Certain types of nanopatterned substrates, in particular the ones with small nanostructures (e.g., 300–300 nm groove ridges and 300–300 nm pillar diameter gaps), were found to effectively enhance focal adhesion complex development. Consequently, these substrates enhanced hNSC differentiation toward neurons and astrocytes. Nanotopographical-induced formation of focal adhesions in hNSCs activates integrin-mediated mechanotransduction and intracellular signaling pathways such as MEK-ERK, which may ultimately promote gene expression related to NSC differentiation. This strategy of manipulating matrix surface topography could be applied to develop culture substrates and tissue engineered scaffolds that improve the efficacy of NSC therapeutics.</description><subject>Cell Differentiation - drug effects</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coated Materials, Biocompatible - pharmacology</subject><subject>Fibronectins - chemistry</subject><subject>Focal Adhesions - drug effects</subject><subject>Humans</subject><subject>Nanotechnology - methods</subject><subject>Neural Stem Cells - cytology</subject><subject>Neurodegenerative Diseases - therapy</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Polymers - chemistry</subject><subject>Polymers - pharmacology</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkDlPw0AQhVcIREKg4A8gNxQUhj187JZRDoIUQgHU1mQP4sjetXbtgn-PI4Mrqjea-d7T6CF0S_AjwZQ8QZ30kmbmDE2JSJKY05Sej3OSTNBVCEeMM0ZxeokmlHEhUp5Okd-Bda1r3JeH5lBKqKJXsGXTVdCWzkbORGt32s7VQYfTZu18PdyM89HKHsBKraJlaYz22rblaNx0Ndhopzvf-99bXUcLXVXhGl0YqIK--dUZ-lyvPhabePv2_LKYb2NgnLQx0xwSlSvKE6CZMoxIxUWe5VwoKgWRXGnDhKA5VvvcmD1jNDNCCUlxbwA2Qw9DrvQuBK9N0fiyBv9dEFyceivG3nr2bmCbbl9rNZJ_RfXA_QCADMXRdd72r_8T9AMiHnX-</recordid><startdate>20131113</startdate><enddate>20131113</enddate><creator>Yang, Kisuk</creator><creator>Jung, Kyuhwan</creator><creator>Ko, Eunkyung</creator><creator>Kim, Jin</creator><creator>Park, Kook In</creator><creator>Kim, Jinseok</creator><creator>Cho, Seung-Woo</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131113</creationdate><title>Nanotopographical Manipulation of Focal Adhesion Formation for Enhanced Differentiation of Human Neural Stem Cells</title><author>Yang, Kisuk ; Jung, Kyuhwan ; Ko, Eunkyung ; Kim, Jin ; Park, Kook In ; Kim, Jinseok ; Cho, Seung-Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-3e8a4d7d284a26df31cd8976789d2c91c8def399270db7ffb3326f9d9c20a26a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cell Differentiation - drug effects</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coated Materials, Biocompatible - pharmacology</topic><topic>Fibronectins - chemistry</topic><topic>Focal Adhesions - drug effects</topic><topic>Humans</topic><topic>Nanotechnology - methods</topic><topic>Neural Stem Cells - cytology</topic><topic>Neurodegenerative Diseases - therapy</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Polymers - chemistry</topic><topic>Polymers - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Kisuk</creatorcontrib><creatorcontrib>Jung, Kyuhwan</creatorcontrib><creatorcontrib>Ko, Eunkyung</creatorcontrib><creatorcontrib>Kim, Jin</creatorcontrib><creatorcontrib>Park, Kook In</creatorcontrib><creatorcontrib>Kim, Jinseok</creatorcontrib><creatorcontrib>Cho, Seung-Woo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Kisuk</au><au>Jung, Kyuhwan</au><au>Ko, Eunkyung</au><au>Kim, Jin</au><au>Park, Kook In</au><au>Kim, Jinseok</au><au>Cho, Seung-Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanotopographical Manipulation of Focal Adhesion Formation for Enhanced Differentiation of Human Neural Stem Cells</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2013-11-13</date><risdate>2013</risdate><volume>5</volume><issue>21</issue><spage>10529</spage><epage>10540</epage><pages>10529-10540</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Manipulating neural stem cell (NSC) fate is of great importance for improving the therapeutic efficacy of NSCs to treat neurodegenerative disorders. Biophysical cues, in addition to biochemical factors, regulate NSC phenotype and function. In this study, we assessed the extent to which surface nanotopography of culture substrates modulates human NSC (hNSC) differentiation. Fibronectin-coated polymer substrates with diverse nanoscale shapes (groove and pillar) and dimensions (ranging from 300 to 1500 nm groove width and pillar gap) were used to investigate the effects of topographical cues on hNSC morphology, alignment, focal adhesion, and differentiation. The majority of nanopatterned substrates induced substantial changes in cellular morphology and alignment along the patterned shapes, leading to alterations in focal adhesion and F-actin reorganization. Certain types of nanopatterned substrates, in particular the ones with small nanostructures (e.g., 300–300 nm groove ridges and 300–300 nm pillar diameter gaps), were found to effectively enhance focal adhesion complex development. Consequently, these substrates enhanced hNSC differentiation toward neurons and astrocytes. Nanotopographical-induced formation of focal adhesions in hNSCs activates integrin-mediated mechanotransduction and intracellular signaling pathways such as MEK-ERK, which may ultimately promote gene expression related to NSC differentiation. This strategy of manipulating matrix surface topography could be applied to develop culture substrates and tissue engineered scaffolds that improve the efficacy of NSC therapeutics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23899585</pmid><doi>10.1021/am402156f</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2013-11, Vol.5 (21), p.10529-10540
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_am402156f
source MEDLINE; ACS Publications
subjects Cell Differentiation - drug effects
Coated Materials, Biocompatible - chemistry
Coated Materials, Biocompatible - pharmacology
Fibronectins - chemistry
Focal Adhesions - drug effects
Humans
Nanotechnology - methods
Neural Stem Cells - cytology
Neurodegenerative Diseases - therapy
Osteoblasts - cytology
Osteoblasts - drug effects
Polymers - chemistry
Polymers - pharmacology
title Nanotopographical Manipulation of Focal Adhesion Formation for Enhanced Differentiation of Human Neural Stem Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanotopographical%20Manipulation%20of%20Focal%20Adhesion%20Formation%20for%20Enhanced%20Differentiation%20of%20Human%20Neural%20Stem%20Cells&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Yang,%20Kisuk&rft.date=2013-11-13&rft.volume=5&rft.issue=21&rft.spage=10529&rft.epage=10540&rft.pages=10529-10540&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am402156f&rft_dat=%3Cacs_cross%3Eb913008428%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23899585&rfr_iscdi=true