Metabolic Engineering of the MEP Pathway in Bacillus subtilis for Increased Biosynthesis of Menaquinone‑7

Vitamin K is essential for blood coagulation and plays important roles in bone and cardiovascular health. Menaquinone-7 (MK-7) is one form of vitamin K that is especially useful due to its long half-life in the circulation. MK-7 is difficult to make via organic synthesis, and is thus commonly produc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS synthetic biology 2019-07, Vol.8 (7), p.1620-1630
Hauptverfasser: Ma, Yanwei, McClure, Dale D, Somerville, Mark V, Proschogo, Nicholas W, Dehghani, Fariba, Kavanagh, John M, Coleman, Nicholas V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1630
container_issue 7
container_start_page 1620
container_title ACS synthetic biology
container_volume 8
creator Ma, Yanwei
McClure, Dale D
Somerville, Mark V
Proschogo, Nicholas W
Dehghani, Fariba
Kavanagh, John M
Coleman, Nicholas V
description Vitamin K is essential for blood coagulation and plays important roles in bone and cardiovascular health. Menaquinone-7 (MK-7) is one form of vitamin K that is especially useful due to its long half-life in the circulation. MK-7 is difficult to make via organic synthesis, and is thus commonly produced by fermentation. This study aimed to genetically modify Bacillus subtilis cultures to increase their MK-7 yield and reduce production costs. We constructed 12 different strains of B. subtilis 168 by overexpressing different combinations of the rate-limiting enzymes Dxs, Dxr, Idi, and MenA. We observed an 11-fold enhancement of production in the best-performing strain, resulting in 50 mg/L MK-7. Metabolite analysis revealed new bottlenecks in the pathway at IspG and IspH, which suggest avenues for further optimization. This work highlights the usefulness of Bacillus subtilis for industrial production of high value compounds.
doi_str_mv 10.1021/acssynbio.9b00077
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssynbio_9b00077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c98366801</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-33f50d2700247311ee2d7b46eedeb1465b058fc891efaff75142e70585f930553</originalsourceid><addsrcrecordid>eNp9kMFOAjEQhhujEYM8gBfTF1hst9stHIWgkkDkoOdNuzuF4tJiuxvDzVfwFX0SS0DiydNMZv7vz8yP0A0lfUpSeifLEHZWGdcfKkKIEGfoKqU5TTjJ2fmfvoN6IayjhHDOOBtcog6j6X7DrtDbHBqpXG1KPLFLYwG8sUvsNG5WgOeTBV7IZvUhd9hYPJKlqes24NCqxtQmYO08ntrSgwxQ4ZFx8aQIhriKFnOw8r011ln4_vwS1-hCyzpA71i76PVh8jJ-SmbPj9Px_SyRjA2bhDHNSZUKQtJMMEoB0kqoLAeoQNEs54rwgS4HQwpaai04zVIQccb1kO1_7CJ68C29C8GDLrbebKTfFZQU--yKU3bFMbvI3B6Ybas2UJ2I36SiIDkIIlusXettfOEfwx_Du31W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Metabolic Engineering of the MEP Pathway in Bacillus subtilis for Increased Biosynthesis of Menaquinone‑7</title><source>ACS Publications</source><source>MEDLINE</source><creator>Ma, Yanwei ; McClure, Dale D ; Somerville, Mark V ; Proschogo, Nicholas W ; Dehghani, Fariba ; Kavanagh, John M ; Coleman, Nicholas V</creator><creatorcontrib>Ma, Yanwei ; McClure, Dale D ; Somerville, Mark V ; Proschogo, Nicholas W ; Dehghani, Fariba ; Kavanagh, John M ; Coleman, Nicholas V</creatorcontrib><description>Vitamin K is essential for blood coagulation and plays important roles in bone and cardiovascular health. Menaquinone-7 (MK-7) is one form of vitamin K that is especially useful due to its long half-life in the circulation. MK-7 is difficult to make via organic synthesis, and is thus commonly produced by fermentation. This study aimed to genetically modify Bacillus subtilis cultures to increase their MK-7 yield and reduce production costs. We constructed 12 different strains of B. subtilis 168 by overexpressing different combinations of the rate-limiting enzymes Dxs, Dxr, Idi, and MenA. We observed an 11-fold enhancement of production in the best-performing strain, resulting in 50 mg/L MK-7. Metabolite analysis revealed new bottlenecks in the pathway at IspG and IspH, which suggest avenues for further optimization. This work highlights the usefulness of Bacillus subtilis for industrial production of high value compounds.</description><identifier>ISSN: 2161-5063</identifier><identifier>EISSN: 2161-5063</identifier><identifier>DOI: 10.1021/acssynbio.9b00077</identifier><identifier>PMID: 31250633</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bacillus subtilis - metabolism ; Bacterial Proteins - metabolism ; Culture Media - metabolism ; Fermentation - physiology ; Metabolic Engineering - methods ; Receptor, EphB6 - metabolism ; Signal Transduction - physiology ; Vitamin K 2 - analogs &amp; derivatives ; Vitamin K 2 - metabolism</subject><ispartof>ACS synthetic biology, 2019-07, Vol.8 (7), p.1620-1630</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-33f50d2700247311ee2d7b46eedeb1465b058fc891efaff75142e70585f930553</citedby><cites>FETCH-LOGICAL-a339t-33f50d2700247311ee2d7b46eedeb1465b058fc891efaff75142e70585f930553</cites><orcidid>0000-0002-3594-1754 ; 0000-0002-7805-8101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssynbio.9b00077$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssynbio.9b00077$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31250633$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Yanwei</creatorcontrib><creatorcontrib>McClure, Dale D</creatorcontrib><creatorcontrib>Somerville, Mark V</creatorcontrib><creatorcontrib>Proschogo, Nicholas W</creatorcontrib><creatorcontrib>Dehghani, Fariba</creatorcontrib><creatorcontrib>Kavanagh, John M</creatorcontrib><creatorcontrib>Coleman, Nicholas V</creatorcontrib><title>Metabolic Engineering of the MEP Pathway in Bacillus subtilis for Increased Biosynthesis of Menaquinone‑7</title><title>ACS synthetic biology</title><addtitle>ACS Synth. Biol</addtitle><description>Vitamin K is essential for blood coagulation and plays important roles in bone and cardiovascular health. Menaquinone-7 (MK-7) is one form of vitamin K that is especially useful due to its long half-life in the circulation. MK-7 is difficult to make via organic synthesis, and is thus commonly produced by fermentation. This study aimed to genetically modify Bacillus subtilis cultures to increase their MK-7 yield and reduce production costs. We constructed 12 different strains of B. subtilis 168 by overexpressing different combinations of the rate-limiting enzymes Dxs, Dxr, Idi, and MenA. We observed an 11-fold enhancement of production in the best-performing strain, resulting in 50 mg/L MK-7. Metabolite analysis revealed new bottlenecks in the pathway at IspG and IspH, which suggest avenues for further optimization. This work highlights the usefulness of Bacillus subtilis for industrial production of high value compounds.</description><subject>Bacillus subtilis - metabolism</subject><subject>Bacterial Proteins - metabolism</subject><subject>Culture Media - metabolism</subject><subject>Fermentation - physiology</subject><subject>Metabolic Engineering - methods</subject><subject>Receptor, EphB6 - metabolism</subject><subject>Signal Transduction - physiology</subject><subject>Vitamin K 2 - analogs &amp; derivatives</subject><subject>Vitamin K 2 - metabolism</subject><issn>2161-5063</issn><issn>2161-5063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFOAjEQhhujEYM8gBfTF1hst9stHIWgkkDkoOdNuzuF4tJiuxvDzVfwFX0SS0DiydNMZv7vz8yP0A0lfUpSeifLEHZWGdcfKkKIEGfoKqU5TTjJ2fmfvoN6IayjhHDOOBtcog6j6X7DrtDbHBqpXG1KPLFLYwG8sUvsNG5WgOeTBV7IZvUhd9hYPJKlqes24NCqxtQmYO08ntrSgwxQ4ZFx8aQIhriKFnOw8r011ln4_vwS1-hCyzpA71i76PVh8jJ-SmbPj9Px_SyRjA2bhDHNSZUKQtJMMEoB0kqoLAeoQNEs54rwgS4HQwpaai04zVIQccb1kO1_7CJ68C29C8GDLrbebKTfFZQU--yKU3bFMbvI3B6Ybas2UJ2I36SiIDkIIlusXettfOEfwx_Du31W</recordid><startdate>20190719</startdate><enddate>20190719</enddate><creator>Ma, Yanwei</creator><creator>McClure, Dale D</creator><creator>Somerville, Mark V</creator><creator>Proschogo, Nicholas W</creator><creator>Dehghani, Fariba</creator><creator>Kavanagh, John M</creator><creator>Coleman, Nicholas V</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3594-1754</orcidid><orcidid>https://orcid.org/0000-0002-7805-8101</orcidid></search><sort><creationdate>20190719</creationdate><title>Metabolic Engineering of the MEP Pathway in Bacillus subtilis for Increased Biosynthesis of Menaquinone‑7</title><author>Ma, Yanwei ; McClure, Dale D ; Somerville, Mark V ; Proschogo, Nicholas W ; Dehghani, Fariba ; Kavanagh, John M ; Coleman, Nicholas V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-33f50d2700247311ee2d7b46eedeb1465b058fc891efaff75142e70585f930553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bacillus subtilis - metabolism</topic><topic>Bacterial Proteins - metabolism</topic><topic>Culture Media - metabolism</topic><topic>Fermentation - physiology</topic><topic>Metabolic Engineering - methods</topic><topic>Receptor, EphB6 - metabolism</topic><topic>Signal Transduction - physiology</topic><topic>Vitamin K 2 - analogs &amp; derivatives</topic><topic>Vitamin K 2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yanwei</creatorcontrib><creatorcontrib>McClure, Dale D</creatorcontrib><creatorcontrib>Somerville, Mark V</creatorcontrib><creatorcontrib>Proschogo, Nicholas W</creatorcontrib><creatorcontrib>Dehghani, Fariba</creatorcontrib><creatorcontrib>Kavanagh, John M</creatorcontrib><creatorcontrib>Coleman, Nicholas V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS synthetic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Yanwei</au><au>McClure, Dale D</au><au>Somerville, Mark V</au><au>Proschogo, Nicholas W</au><au>Dehghani, Fariba</au><au>Kavanagh, John M</au><au>Coleman, Nicholas V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic Engineering of the MEP Pathway in Bacillus subtilis for Increased Biosynthesis of Menaquinone‑7</atitle><jtitle>ACS synthetic biology</jtitle><addtitle>ACS Synth. Biol</addtitle><date>2019-07-19</date><risdate>2019</risdate><volume>8</volume><issue>7</issue><spage>1620</spage><epage>1630</epage><pages>1620-1630</pages><issn>2161-5063</issn><eissn>2161-5063</eissn><abstract>Vitamin K is essential for blood coagulation and plays important roles in bone and cardiovascular health. Menaquinone-7 (MK-7) is one form of vitamin K that is especially useful due to its long half-life in the circulation. MK-7 is difficult to make via organic synthesis, and is thus commonly produced by fermentation. This study aimed to genetically modify Bacillus subtilis cultures to increase their MK-7 yield and reduce production costs. We constructed 12 different strains of B. subtilis 168 by overexpressing different combinations of the rate-limiting enzymes Dxs, Dxr, Idi, and MenA. We observed an 11-fold enhancement of production in the best-performing strain, resulting in 50 mg/L MK-7. Metabolite analysis revealed new bottlenecks in the pathway at IspG and IspH, which suggest avenues for further optimization. This work highlights the usefulness of Bacillus subtilis for industrial production of high value compounds.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31250633</pmid><doi>10.1021/acssynbio.9b00077</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3594-1754</orcidid><orcidid>https://orcid.org/0000-0002-7805-8101</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2161-5063
ispartof ACS synthetic biology, 2019-07, Vol.8 (7), p.1620-1630
issn 2161-5063
2161-5063
language eng
recordid cdi_crossref_primary_10_1021_acssynbio_9b00077
source ACS Publications; MEDLINE
subjects Bacillus subtilis - metabolism
Bacterial Proteins - metabolism
Culture Media - metabolism
Fermentation - physiology
Metabolic Engineering - methods
Receptor, EphB6 - metabolism
Signal Transduction - physiology
Vitamin K 2 - analogs & derivatives
Vitamin K 2 - metabolism
title Metabolic Engineering of the MEP Pathway in Bacillus subtilis for Increased Biosynthesis of Menaquinone‑7
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20Engineering%20of%20the%20MEP%20Pathway%20in%20Bacillus%20subtilis%20for%20Increased%20Biosynthesis%20of%20Menaquinone%E2%80%917&rft.jtitle=ACS%20synthetic%20biology&rft.au=Ma,%20Yanwei&rft.date=2019-07-19&rft.volume=8&rft.issue=7&rft.spage=1620&rft.epage=1630&rft.pages=1620-1630&rft.issn=2161-5063&rft.eissn=2161-5063&rft_id=info:doi/10.1021/acssynbio.9b00077&rft_dat=%3Cacs_cross%3Ec98366801%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31250633&rfr_iscdi=true