Construction of a Nonnatural C 60 Carotenoid Biosynthetic Pathway

Longer-chain carotenoids have interesting physiological and electronic/photonic properties due to their extensive polyene structures. Establishing nonnatural biosynthetic pathways for longer-chain carotenoids in engineerable microorganisms will provide a platform to diversify and explore the potenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS synthetic biology 2019-03, Vol.8 (3), p.511-520
Hauptverfasser: Li, Ling, Furubayashi, Maiko, Hosoi, Takuya, Seki, Takahiro, Otani, Yusuke, Kawai-Noma, Shigeko, Saito, Kyoichi, Umeno, Daisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 520
container_issue 3
container_start_page 511
container_title ACS synthetic biology
container_volume 8
creator Li, Ling
Furubayashi, Maiko
Hosoi, Takuya
Seki, Takahiro
Otani, Yusuke
Kawai-Noma, Shigeko
Saito, Kyoichi
Umeno, Daisuke
description Longer-chain carotenoids have interesting physiological and electronic/photonic properties due to their extensive polyene structures. Establishing nonnatural biosynthetic pathways for longer-chain carotenoids in engineerable microorganisms will provide a platform to diversify and explore the potential of these molecules. We have previously reported the biosynthesis of nonnatural C carotenoids by engineering a C -carotenoid backbone synthase (CrtM) from Staphylococcus aureus. In the present work, we conducted a series of experiments to engineer C carotenoid pathways. Stepwise introduction of cavity-expanding mutations together with stabilizing mutations progressively shifted the product size specificity of CrtM toward efficient synthases for C carotenoids. By coexpressing these CrtM variants with hexaprenyl diphosphate synthase, we observed that C -phytoene accumulated together with a small amount of C -phytoene, which is the largest carotenoid biosynthesized to date. Although these carotenoids failed to serve as a substrate for carotene desaturases, the C -half of the C -phytoene was accepted by the variant of phytoene desaturase CrtI, leading to accumulation of the largest carotenoid-based pigments. Continuing effort should further expand the scope of carotenoids, which are promising components for various biological (light-harvesting, antioxidant, and communicating) and nonbiological (photovoltaic, photonic, and field-effect transistor) systems.
doi_str_mv 10.1021/acssynbio.8b00385
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssynbio_8b00385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30689939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1139-20f0c6a9db13b90936ab83d98f718e8fc14c691b9ad671d3dbff0945b388f4ef3</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujEYP8AC-mf2BxhmFLe8SNXwlRD3re9DOsgS1pSwz_XgxInMvM5Zk378PYDcIYYYJ32ua8600Xx9IAkKzP2NUEBVY1CDr_dw_YKOcv2E9dU03ykg0IhFSK1BWbN7HPJW1t6WLPY-Cav8a-12Wb9Io3XABvdIrF97Fz_L6L-8yy9KWz_F2X5bfeXbOLoFfZj457yD4fHz6a52rx9vTSzBeVRSRVTSCAFVo5g2QUKBLaSHJKhhlKL4PFqRUKjdJOzNCRMyGAmtaGpAxTH2jI8PDXpphz8qHdpG6t065FaH-NtCcj7dHInrk9MJutWXt3Iv760w_3bF6-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Construction of a Nonnatural C 60 Carotenoid Biosynthetic Pathway</title><source>ACS Publications</source><source>MEDLINE</source><creator>Li, Ling ; Furubayashi, Maiko ; Hosoi, Takuya ; Seki, Takahiro ; Otani, Yusuke ; Kawai-Noma, Shigeko ; Saito, Kyoichi ; Umeno, Daisuke</creator><creatorcontrib>Li, Ling ; Furubayashi, Maiko ; Hosoi, Takuya ; Seki, Takahiro ; Otani, Yusuke ; Kawai-Noma, Shigeko ; Saito, Kyoichi ; Umeno, Daisuke</creatorcontrib><description>Longer-chain carotenoids have interesting physiological and electronic/photonic properties due to their extensive polyene structures. Establishing nonnatural biosynthetic pathways for longer-chain carotenoids in engineerable microorganisms will provide a platform to diversify and explore the potential of these molecules. We have previously reported the biosynthesis of nonnatural C carotenoids by engineering a C -carotenoid backbone synthase (CrtM) from Staphylococcus aureus. In the present work, we conducted a series of experiments to engineer C carotenoid pathways. Stepwise introduction of cavity-expanding mutations together with stabilizing mutations progressively shifted the product size specificity of CrtM toward efficient synthases for C carotenoids. By coexpressing these CrtM variants with hexaprenyl diphosphate synthase, we observed that C -phytoene accumulated together with a small amount of C -phytoene, which is the largest carotenoid biosynthesized to date. Although these carotenoids failed to serve as a substrate for carotene desaturases, the C -half of the C -phytoene was accepted by the variant of phytoene desaturase CrtI, leading to accumulation of the largest carotenoid-based pigments. Continuing effort should further expand the scope of carotenoids, which are promising components for various biological (light-harvesting, antioxidant, and communicating) and nonbiological (photovoltaic, photonic, and field-effect transistor) systems.</description><identifier>ISSN: 2161-5063</identifier><identifier>EISSN: 2161-5063</identifier><identifier>DOI: 10.1021/acssynbio.8b00385</identifier><identifier>PMID: 30689939</identifier><language>eng</language><publisher>United States</publisher><subject>Bacterial Proteins - metabolism ; Biocompatible Materials ; Biosynthetic Pathways - physiology ; Carbon - chemistry ; Carotenoids - metabolism ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Geranylgeranyl-Diphosphate Geranylgeranyltransferase - metabolism ; Metabolic Engineering - methods ; Mutation ; Oxidoreductases - metabolism ; Plasmids - genetics ; Polyisoprenyl Phosphates - metabolism ; Sesquiterpenes - metabolism</subject><ispartof>ACS synthetic biology, 2019-03, Vol.8 (3), p.511-520</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1139-20f0c6a9db13b90936ab83d98f718e8fc14c691b9ad671d3dbff0945b388f4ef3</citedby><cites>FETCH-LOGICAL-c1139-20f0c6a9db13b90936ab83d98f718e8fc14c691b9ad671d3dbff0945b388f4ef3</cites><orcidid>0000-0001-5215-523X ; 0000-0001-8107-552X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30689939$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Furubayashi, Maiko</creatorcontrib><creatorcontrib>Hosoi, Takuya</creatorcontrib><creatorcontrib>Seki, Takahiro</creatorcontrib><creatorcontrib>Otani, Yusuke</creatorcontrib><creatorcontrib>Kawai-Noma, Shigeko</creatorcontrib><creatorcontrib>Saito, Kyoichi</creatorcontrib><creatorcontrib>Umeno, Daisuke</creatorcontrib><title>Construction of a Nonnatural C 60 Carotenoid Biosynthetic Pathway</title><title>ACS synthetic biology</title><addtitle>ACS Synth Biol</addtitle><description>Longer-chain carotenoids have interesting physiological and electronic/photonic properties due to their extensive polyene structures. Establishing nonnatural biosynthetic pathways for longer-chain carotenoids in engineerable microorganisms will provide a platform to diversify and explore the potential of these molecules. We have previously reported the biosynthesis of nonnatural C carotenoids by engineering a C -carotenoid backbone synthase (CrtM) from Staphylococcus aureus. In the present work, we conducted a series of experiments to engineer C carotenoid pathways. Stepwise introduction of cavity-expanding mutations together with stabilizing mutations progressively shifted the product size specificity of CrtM toward efficient synthases for C carotenoids. By coexpressing these CrtM variants with hexaprenyl diphosphate synthase, we observed that C -phytoene accumulated together with a small amount of C -phytoene, which is the largest carotenoid biosynthesized to date. Although these carotenoids failed to serve as a substrate for carotene desaturases, the C -half of the C -phytoene was accepted by the variant of phytoene desaturase CrtI, leading to accumulation of the largest carotenoid-based pigments. Continuing effort should further expand the scope of carotenoids, which are promising components for various biological (light-harvesting, antioxidant, and communicating) and nonbiological (photovoltaic, photonic, and field-effect transistor) systems.</description><subject>Bacterial Proteins - metabolism</subject><subject>Biocompatible Materials</subject><subject>Biosynthetic Pathways - physiology</subject><subject>Carbon - chemistry</subject><subject>Carotenoids - metabolism</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Geranylgeranyl-Diphosphate Geranylgeranyltransferase - metabolism</subject><subject>Metabolic Engineering - methods</subject><subject>Mutation</subject><subject>Oxidoreductases - metabolism</subject><subject>Plasmids - genetics</subject><subject>Polyisoprenyl Phosphates - metabolism</subject><subject>Sesquiterpenes - metabolism</subject><issn>2161-5063</issn><issn>2161-5063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkE1PAjEQhhujEYP8AC-mf2BxhmFLe8SNXwlRD3re9DOsgS1pSwz_XgxInMvM5Zk378PYDcIYYYJ32ua8600Xx9IAkKzP2NUEBVY1CDr_dw_YKOcv2E9dU03ykg0IhFSK1BWbN7HPJW1t6WLPY-Cav8a-12Wb9Io3XABvdIrF97Fz_L6L-8yy9KWz_F2X5bfeXbOLoFfZj457yD4fHz6a52rx9vTSzBeVRSRVTSCAFVo5g2QUKBLaSHJKhhlKL4PFqRUKjdJOzNCRMyGAmtaGpAxTH2jI8PDXpphz8qHdpG6t065FaH-NtCcj7dHInrk9MJutWXt3Iv760w_3bF6-</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Li, Ling</creator><creator>Furubayashi, Maiko</creator><creator>Hosoi, Takuya</creator><creator>Seki, Takahiro</creator><creator>Otani, Yusuke</creator><creator>Kawai-Noma, Shigeko</creator><creator>Saito, Kyoichi</creator><creator>Umeno, Daisuke</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5215-523X</orcidid><orcidid>https://orcid.org/0000-0001-8107-552X</orcidid></search><sort><creationdate>20190315</creationdate><title>Construction of a Nonnatural C 60 Carotenoid Biosynthetic Pathway</title><author>Li, Ling ; Furubayashi, Maiko ; Hosoi, Takuya ; Seki, Takahiro ; Otani, Yusuke ; Kawai-Noma, Shigeko ; Saito, Kyoichi ; Umeno, Daisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1139-20f0c6a9db13b90936ab83d98f718e8fc14c691b9ad671d3dbff0945b388f4ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bacterial Proteins - metabolism</topic><topic>Biocompatible Materials</topic><topic>Biosynthetic Pathways - physiology</topic><topic>Carbon - chemistry</topic><topic>Carotenoids - metabolism</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Geranylgeranyl-Diphosphate Geranylgeranyltransferase - metabolism</topic><topic>Metabolic Engineering - methods</topic><topic>Mutation</topic><topic>Oxidoreductases - metabolism</topic><topic>Plasmids - genetics</topic><topic>Polyisoprenyl Phosphates - metabolism</topic><topic>Sesquiterpenes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Furubayashi, Maiko</creatorcontrib><creatorcontrib>Hosoi, Takuya</creatorcontrib><creatorcontrib>Seki, Takahiro</creatorcontrib><creatorcontrib>Otani, Yusuke</creatorcontrib><creatorcontrib>Kawai-Noma, Shigeko</creatorcontrib><creatorcontrib>Saito, Kyoichi</creatorcontrib><creatorcontrib>Umeno, Daisuke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS synthetic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ling</au><au>Furubayashi, Maiko</au><au>Hosoi, Takuya</au><au>Seki, Takahiro</au><au>Otani, Yusuke</au><au>Kawai-Noma, Shigeko</au><au>Saito, Kyoichi</au><au>Umeno, Daisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of a Nonnatural C 60 Carotenoid Biosynthetic Pathway</atitle><jtitle>ACS synthetic biology</jtitle><addtitle>ACS Synth Biol</addtitle><date>2019-03-15</date><risdate>2019</risdate><volume>8</volume><issue>3</issue><spage>511</spage><epage>520</epage><pages>511-520</pages><issn>2161-5063</issn><eissn>2161-5063</eissn><abstract>Longer-chain carotenoids have interesting physiological and electronic/photonic properties due to their extensive polyene structures. Establishing nonnatural biosynthetic pathways for longer-chain carotenoids in engineerable microorganisms will provide a platform to diversify and explore the potential of these molecules. We have previously reported the biosynthesis of nonnatural C carotenoids by engineering a C -carotenoid backbone synthase (CrtM) from Staphylococcus aureus. In the present work, we conducted a series of experiments to engineer C carotenoid pathways. Stepwise introduction of cavity-expanding mutations together with stabilizing mutations progressively shifted the product size specificity of CrtM toward efficient synthases for C carotenoids. By coexpressing these CrtM variants with hexaprenyl diphosphate synthase, we observed that C -phytoene accumulated together with a small amount of C -phytoene, which is the largest carotenoid biosynthesized to date. Although these carotenoids failed to serve as a substrate for carotene desaturases, the C -half of the C -phytoene was accepted by the variant of phytoene desaturase CrtI, leading to accumulation of the largest carotenoid-based pigments. Continuing effort should further expand the scope of carotenoids, which are promising components for various biological (light-harvesting, antioxidant, and communicating) and nonbiological (photovoltaic, photonic, and field-effect transistor) systems.</abstract><cop>United States</cop><pmid>30689939</pmid><doi>10.1021/acssynbio.8b00385</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5215-523X</orcidid><orcidid>https://orcid.org/0000-0001-8107-552X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2161-5063
ispartof ACS synthetic biology, 2019-03, Vol.8 (3), p.511-520
issn 2161-5063
2161-5063
language eng
recordid cdi_crossref_primary_10_1021_acssynbio_8b00385
source ACS Publications; MEDLINE
subjects Bacterial Proteins - metabolism
Biocompatible Materials
Biosynthetic Pathways - physiology
Carbon - chemistry
Carotenoids - metabolism
Escherichia coli - genetics
Escherichia coli - metabolism
Geranylgeranyl-Diphosphate Geranylgeranyltransferase - metabolism
Metabolic Engineering - methods
Mutation
Oxidoreductases - metabolism
Plasmids - genetics
Polyisoprenyl Phosphates - metabolism
Sesquiterpenes - metabolism
title Construction of a Nonnatural C 60 Carotenoid Biosynthetic Pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T14%3A52%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20a%20Nonnatural%20C%2060%20Carotenoid%20Biosynthetic%20Pathway&rft.jtitle=ACS%20synthetic%20biology&rft.au=Li,%20Ling&rft.date=2019-03-15&rft.volume=8&rft.issue=3&rft.spage=511&rft.epage=520&rft.pages=511-520&rft.issn=2161-5063&rft.eissn=2161-5063&rft_id=info:doi/10.1021/acssynbio.8b00385&rft_dat=%3Cpubmed_cross%3E30689939%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30689939&rfr_iscdi=true