Activating Hematite Nanoplates via Partial Reduction for Electrocatalytic Oxygen Reduction Reaction

For redox-active hematite (α-Fe2O3) materials, the adverse electroconductivity deeply obstructs the electrocatalytic activity. Herein, a series of iron oxides including α-Fe2O3 nanoplates, α-Fe2O3/Fe3O4 composites, and Fe3O4 material was prepared via a controllable reduction treatment on α-Fe2O3 pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2019-07, Vol.7 (13), p.11841-11849
Hauptverfasser: Wan, Hao, Lv, Menghua, Liu, Xiaohe, Chen, Gen, Zhang, Ning, Cao, Yijun, Wang, Haidong, Ma, Renzhi, Qiu, Guanzhou
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11849
container_issue 13
container_start_page 11841
container_title ACS sustainable chemistry & engineering
container_volume 7
creator Wan, Hao
Lv, Menghua
Liu, Xiaohe
Chen, Gen
Zhang, Ning
Cao, Yijun
Wang, Haidong
Ma, Renzhi
Qiu, Guanzhou
description For redox-active hematite (α-Fe2O3) materials, the adverse electroconductivity deeply obstructs the electrocatalytic activity. Herein, a series of iron oxides including α-Fe2O3 nanoplates, α-Fe2O3/Fe3O4 composites, and Fe3O4 material was prepared via a controllable reduction treatment on α-Fe2O3 precursor. When these iron oxides were characterized as electrocatalysts for oxygen reduction reaction (ORR), it was found that α-Fe2O3 nanoplates could be effectively activated via the reduction treatment. In particular, as the combined merits of composition optimization and electroconductivity improvement, the as-reduced composite consisting of α-Fe2O3 (49.6%) and Fe3O4 (50.4%) achieved the best activity of reaching the current density of 4.90 mA cm–2 at the potential of 0.4 V versus reversible hydrogen electrode (RHE) accompanied by a Tafel slope of 76 mV dec–1 and a high selectivity for four-electron pathway, surpassing single-phase α-Fe2O3 and Fe3O4, as well as other congeneric iron oxide composites. This high performance may offer a great potential of developing electrocatalysts with optimized composition and physicochemical properties.
doi_str_mv 10.1021/acssuschemeng.9b02352
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssuschemeng_9b02352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d048428184</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-5a29d5f2cdc21da59318ff3be586e944ed3d002f7b895b594538fa950b81179b3</originalsourceid><addsrcrecordid>eNqFkN1qAjEQhUNpoWJ9hEJeYG1-NppcithakFqkvV5ms5Ptyv5IEqW-fbfqhb3q3MyBOd9wOIQ8cjbmTPAnsCHsg_3CBttybHImpBI3ZCD4RCcs1er2St-TUQhb1o8xUmg-IHZmY3WAWLUlXWLTi4j0DdpuV0PEQA8V0HfwsYKabrDY9-6upa7zdFGjjb6zEKE-xsrS9fexxPbKtUE4iQdy56AOOLrsIfl8XnzMl8lq_fI6n60SkBMeEwXCFMoJW1jBC1BGcu2czFHpCZo0xUIWjAk3zbVRuTKpktqBUSzXnE9NLodEnf9a34Xg0WU7XzXgjxln2W9Z2Z-ysktZPcfPXH_Ott3et33Kf5gffB10gA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Activating Hematite Nanoplates via Partial Reduction for Electrocatalytic Oxygen Reduction Reaction</title><source>ACS Publications</source><creator>Wan, Hao ; Lv, Menghua ; Liu, Xiaohe ; Chen, Gen ; Zhang, Ning ; Cao, Yijun ; Wang, Haidong ; Ma, Renzhi ; Qiu, Guanzhou</creator><creatorcontrib>Wan, Hao ; Lv, Menghua ; Liu, Xiaohe ; Chen, Gen ; Zhang, Ning ; Cao, Yijun ; Wang, Haidong ; Ma, Renzhi ; Qiu, Guanzhou</creatorcontrib><description>For redox-active hematite (α-Fe2O3) materials, the adverse electroconductivity deeply obstructs the electrocatalytic activity. Herein, a series of iron oxides including α-Fe2O3 nanoplates, α-Fe2O3/Fe3O4 composites, and Fe3O4 material was prepared via a controllable reduction treatment on α-Fe2O3 precursor. When these iron oxides were characterized as electrocatalysts for oxygen reduction reaction (ORR), it was found that α-Fe2O3 nanoplates could be effectively activated via the reduction treatment. In particular, as the combined merits of composition optimization and electroconductivity improvement, the as-reduced composite consisting of α-Fe2O3 (49.6%) and Fe3O4 (50.4%) achieved the best activity of reaching the current density of 4.90 mA cm–2 at the potential of 0.4 V versus reversible hydrogen electrode (RHE) accompanied by a Tafel slope of 76 mV dec–1 and a high selectivity for four-electron pathway, surpassing single-phase α-Fe2O3 and Fe3O4, as well as other congeneric iron oxide composites. This high performance may offer a great potential of developing electrocatalysts with optimized composition and physicochemical properties.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.9b02352</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2019-07, Vol.7 (13), p.11841-11849</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-5a29d5f2cdc21da59318ff3be586e944ed3d002f7b895b594538fa950b81179b3</citedby><cites>FETCH-LOGICAL-a361t-5a29d5f2cdc21da59318ff3be586e944ed3d002f7b895b594538fa950b81179b3</cites><orcidid>0000-0003-1297-9597 ; 0000-0001-7126-2006 ; 0000-0003-3504-3572 ; 0000-0002-3033-0276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.9b02352$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.9b02352$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Wan, Hao</creatorcontrib><creatorcontrib>Lv, Menghua</creatorcontrib><creatorcontrib>Liu, Xiaohe</creatorcontrib><creatorcontrib>Chen, Gen</creatorcontrib><creatorcontrib>Zhang, Ning</creatorcontrib><creatorcontrib>Cao, Yijun</creatorcontrib><creatorcontrib>Wang, Haidong</creatorcontrib><creatorcontrib>Ma, Renzhi</creatorcontrib><creatorcontrib>Qiu, Guanzhou</creatorcontrib><title>Activating Hematite Nanoplates via Partial Reduction for Electrocatalytic Oxygen Reduction Reaction</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>For redox-active hematite (α-Fe2O3) materials, the adverse electroconductivity deeply obstructs the electrocatalytic activity. Herein, a series of iron oxides including α-Fe2O3 nanoplates, α-Fe2O3/Fe3O4 composites, and Fe3O4 material was prepared via a controllable reduction treatment on α-Fe2O3 precursor. When these iron oxides were characterized as electrocatalysts for oxygen reduction reaction (ORR), it was found that α-Fe2O3 nanoplates could be effectively activated via the reduction treatment. In particular, as the combined merits of composition optimization and electroconductivity improvement, the as-reduced composite consisting of α-Fe2O3 (49.6%) and Fe3O4 (50.4%) achieved the best activity of reaching the current density of 4.90 mA cm–2 at the potential of 0.4 V versus reversible hydrogen electrode (RHE) accompanied by a Tafel slope of 76 mV dec–1 and a high selectivity for four-electron pathway, surpassing single-phase α-Fe2O3 and Fe3O4, as well as other congeneric iron oxide composites. This high performance may offer a great potential of developing electrocatalysts with optimized composition and physicochemical properties.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkN1qAjEQhUNpoWJ9hEJeYG1-NppcithakFqkvV5ms5Ptyv5IEqW-fbfqhb3q3MyBOd9wOIQ8cjbmTPAnsCHsg_3CBttybHImpBI3ZCD4RCcs1er2St-TUQhb1o8xUmg-IHZmY3WAWLUlXWLTi4j0DdpuV0PEQA8V0HfwsYKabrDY9-6upa7zdFGjjb6zEKE-xsrS9fexxPbKtUE4iQdy56AOOLrsIfl8XnzMl8lq_fI6n60SkBMeEwXCFMoJW1jBC1BGcu2czFHpCZo0xUIWjAk3zbVRuTKpktqBUSzXnE9NLodEnf9a34Xg0WU7XzXgjxln2W9Z2Z-ysktZPcfPXH_Ott3et33Kf5gffB10gA</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Wan, Hao</creator><creator>Lv, Menghua</creator><creator>Liu, Xiaohe</creator><creator>Chen, Gen</creator><creator>Zhang, Ning</creator><creator>Cao, Yijun</creator><creator>Wang, Haidong</creator><creator>Ma, Renzhi</creator><creator>Qiu, Guanzhou</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1297-9597</orcidid><orcidid>https://orcid.org/0000-0001-7126-2006</orcidid><orcidid>https://orcid.org/0000-0003-3504-3572</orcidid><orcidid>https://orcid.org/0000-0002-3033-0276</orcidid></search><sort><creationdate>20190701</creationdate><title>Activating Hematite Nanoplates via Partial Reduction for Electrocatalytic Oxygen Reduction Reaction</title><author>Wan, Hao ; Lv, Menghua ; Liu, Xiaohe ; Chen, Gen ; Zhang, Ning ; Cao, Yijun ; Wang, Haidong ; Ma, Renzhi ; Qiu, Guanzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-5a29d5f2cdc21da59318ff3be586e944ed3d002f7b895b594538fa950b81179b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Hao</creatorcontrib><creatorcontrib>Lv, Menghua</creatorcontrib><creatorcontrib>Liu, Xiaohe</creatorcontrib><creatorcontrib>Chen, Gen</creatorcontrib><creatorcontrib>Zhang, Ning</creatorcontrib><creatorcontrib>Cao, Yijun</creatorcontrib><creatorcontrib>Wang, Haidong</creatorcontrib><creatorcontrib>Ma, Renzhi</creatorcontrib><creatorcontrib>Qiu, Guanzhou</creatorcontrib><collection>CrossRef</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Hao</au><au>Lv, Menghua</au><au>Liu, Xiaohe</au><au>Chen, Gen</au><au>Zhang, Ning</au><au>Cao, Yijun</au><au>Wang, Haidong</au><au>Ma, Renzhi</au><au>Qiu, Guanzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activating Hematite Nanoplates via Partial Reduction for Electrocatalytic Oxygen Reduction Reaction</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>7</volume><issue>13</issue><spage>11841</spage><epage>11849</epage><pages>11841-11849</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>For redox-active hematite (α-Fe2O3) materials, the adverse electroconductivity deeply obstructs the electrocatalytic activity. Herein, a series of iron oxides including α-Fe2O3 nanoplates, α-Fe2O3/Fe3O4 composites, and Fe3O4 material was prepared via a controllable reduction treatment on α-Fe2O3 precursor. When these iron oxides were characterized as electrocatalysts for oxygen reduction reaction (ORR), it was found that α-Fe2O3 nanoplates could be effectively activated via the reduction treatment. In particular, as the combined merits of composition optimization and electroconductivity improvement, the as-reduced composite consisting of α-Fe2O3 (49.6%) and Fe3O4 (50.4%) achieved the best activity of reaching the current density of 4.90 mA cm–2 at the potential of 0.4 V versus reversible hydrogen electrode (RHE) accompanied by a Tafel slope of 76 mV dec–1 and a high selectivity for four-electron pathway, surpassing single-phase α-Fe2O3 and Fe3O4, as well as other congeneric iron oxide composites. This high performance may offer a great potential of developing electrocatalysts with optimized composition and physicochemical properties.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.9b02352</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1297-9597</orcidid><orcidid>https://orcid.org/0000-0001-7126-2006</orcidid><orcidid>https://orcid.org/0000-0003-3504-3572</orcidid><orcidid>https://orcid.org/0000-0002-3033-0276</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2019-07, Vol.7 (13), p.11841-11849
issn 2168-0485
2168-0485
language eng
recordid cdi_crossref_primary_10_1021_acssuschemeng_9b02352
source ACS Publications
title Activating Hematite Nanoplates via Partial Reduction for Electrocatalytic Oxygen Reduction Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activating%20Hematite%20Nanoplates%20via%20Partial%20Reduction%20for%20Electrocatalytic%20Oxygen%20Reduction%20Reaction&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Wan,%20Hao&rft.date=2019-07-01&rft.volume=7&rft.issue=13&rft.spage=11841&rft.epage=11849&rft.pages=11841-11849&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.9b02352&rft_dat=%3Cacs_cross%3Ed048428184%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true