Pyrolytic Fractionation: A Promising Thermochemical Technique for Processing Oleaginous (Algal) Biomass

We report the development of a two-step pyrolytic fractionation approach that is especially applicable to processing oleaginous algae feed stocks. The first step is a low-temperature pyrolysis (T ∼ 300–320 °C) to produce bio-oils from degradation of protein and carbohydrate fractions. Solid residues...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2018-01, Vol.6 (1), p.237-247
Hauptverfasser: Maddi, Balakrishna, Viamajala, Sridhar, Varanasi, Sasidhar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 247
container_issue 1
container_start_page 237
container_title ACS sustainable chemistry & engineering
container_volume 6
creator Maddi, Balakrishna
Viamajala, Sridhar
Varanasi, Sasidhar
description We report the development of a two-step pyrolytic fractionation approach that is especially applicable to processing oleaginous algae feed stocks. The first step is a low-temperature pyrolysis (T ∼ 300–320 °C) to produce bio-oils from degradation of protein and carbohydrate fractions. Solid residues left behind can subsequently be subjected to a second higher temperature pyrolysis (T ∼ 420–430 °C) to volatilize and/or degrade triglycerides to produce fatty acids, their derivatives, and long chain hydrocarbons. Thus, pyrolytic fractionation can be used to “fractionate” oleaginous biomass and separately recover triglyceride degradation products. Proof-of-concept micropyrolyzer and subsequent lab-scale fixed-bed experiments were performed using oleaginous Chlorella sp. and Scenedesmus sp. to demonstrate the pyrolytic fractionation technique and determine bio-oil yields. As expected, triglyceride-specific bio-oils were rich in hydrocarbons and free fatty acids, were nearly free of water, short-chain organic acids, and other carbohydrate degradation products, and had low N-content. Due to production of “high quality” triglyceride-specific bio-oil vapors, pyrolytic fractionation would allow product upgrading via in situ gas-phase catalytic processes to generate drop-in fuels (hydrocarbons) or specialty chemicals (e.g., fatty amides), without the need to condense the vapors. A conceptual process design is developed and energy requirements for pyrolytic fractionation are assessed and discussed.
doi_str_mv 10.1021/acssuschemeng.7b02309
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssuschemeng_7b02309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a099105195</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-1bf5757cef0aee07285ae6e406dc4ea13938175e83a6ea0dc45c96f7ed91c8ad3</originalsourceid><addsrcrecordid>eNqFUMFOwzAMjRBITGOfgJQjHDqSdmkTbmNiA2nSdhjnysvcLlPbQLwe9ve0bAc44YNt2e89W4-xeynGUsTyCSxRS3aPNTblONuKOBHmig1imepITLS6_tXfshHRQXRhTBJrOWDl-hR8dTo6y-cB7NH5Bvr0zKd8HXztyDUl3-wx1L4_4ixUfIN237ivFnnhQw-zSD-4VYVQusa3xB-mVQnVI39xvgaiO3ZTQEU4utQh-5i_bmZv0XK1eJ9NlxHERh0juS1UpjKLhQBEkcVaAaY4EenOThBkYhItM4U6gRRBdENlTVpkuDPSatglQ6bOujZ4ooBF_hlcDeGUS5H3huV_DMsvhnU8eeZ16_zg29B0X_7D-QaFCXZO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pyrolytic Fractionation: A Promising Thermochemical Technique for Processing Oleaginous (Algal) Biomass</title><source>ACS Publications</source><creator>Maddi, Balakrishna ; Viamajala, Sridhar ; Varanasi, Sasidhar</creator><creatorcontrib>Maddi, Balakrishna ; Viamajala, Sridhar ; Varanasi, Sasidhar</creatorcontrib><description>We report the development of a two-step pyrolytic fractionation approach that is especially applicable to processing oleaginous algae feed stocks. The first step is a low-temperature pyrolysis (T ∼ 300–320 °C) to produce bio-oils from degradation of protein and carbohydrate fractions. Solid residues left behind can subsequently be subjected to a second higher temperature pyrolysis (T ∼ 420–430 °C) to volatilize and/or degrade triglycerides to produce fatty acids, their derivatives, and long chain hydrocarbons. Thus, pyrolytic fractionation can be used to “fractionate” oleaginous biomass and separately recover triglyceride degradation products. Proof-of-concept micropyrolyzer and subsequent lab-scale fixed-bed experiments were performed using oleaginous Chlorella sp. and Scenedesmus sp. to demonstrate the pyrolytic fractionation technique and determine bio-oil yields. As expected, triglyceride-specific bio-oils were rich in hydrocarbons and free fatty acids, were nearly free of water, short-chain organic acids, and other carbohydrate degradation products, and had low N-content. Due to production of “high quality” triglyceride-specific bio-oil vapors, pyrolytic fractionation would allow product upgrading via in situ gas-phase catalytic processes to generate drop-in fuels (hydrocarbons) or specialty chemicals (e.g., fatty amides), without the need to condense the vapors. A conceptual process design is developed and energy requirements for pyrolytic fractionation are assessed and discussed.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.7b02309</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2018-01, Vol.6 (1), p.237-247</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-1bf5757cef0aee07285ae6e406dc4ea13938175e83a6ea0dc45c96f7ed91c8ad3</citedby><cites>FETCH-LOGICAL-a295t-1bf5757cef0aee07285ae6e406dc4ea13938175e83a6ea0dc45c96f7ed91c8ad3</cites><orcidid>0000-0001-5353-6026 ; 0000-0003-3131-7847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.7b02309$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.7b02309$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Maddi, Balakrishna</creatorcontrib><creatorcontrib>Viamajala, Sridhar</creatorcontrib><creatorcontrib>Varanasi, Sasidhar</creatorcontrib><title>Pyrolytic Fractionation: A Promising Thermochemical Technique for Processing Oleaginous (Algal) Biomass</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>We report the development of a two-step pyrolytic fractionation approach that is especially applicable to processing oleaginous algae feed stocks. The first step is a low-temperature pyrolysis (T ∼ 300–320 °C) to produce bio-oils from degradation of protein and carbohydrate fractions. Solid residues left behind can subsequently be subjected to a second higher temperature pyrolysis (T ∼ 420–430 °C) to volatilize and/or degrade triglycerides to produce fatty acids, their derivatives, and long chain hydrocarbons. Thus, pyrolytic fractionation can be used to “fractionate” oleaginous biomass and separately recover triglyceride degradation products. Proof-of-concept micropyrolyzer and subsequent lab-scale fixed-bed experiments were performed using oleaginous Chlorella sp. and Scenedesmus sp. to demonstrate the pyrolytic fractionation technique and determine bio-oil yields. As expected, triglyceride-specific bio-oils were rich in hydrocarbons and free fatty acids, were nearly free of water, short-chain organic acids, and other carbohydrate degradation products, and had low N-content. Due to production of “high quality” triglyceride-specific bio-oil vapors, pyrolytic fractionation would allow product upgrading via in situ gas-phase catalytic processes to generate drop-in fuels (hydrocarbons) or specialty chemicals (e.g., fatty amides), without the need to condense the vapors. A conceptual process design is developed and energy requirements for pyrolytic fractionation are assessed and discussed.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUMFOwzAMjRBITGOfgJQjHDqSdmkTbmNiA2nSdhjnysvcLlPbQLwe9ve0bAc44YNt2e89W4-xeynGUsTyCSxRS3aPNTblONuKOBHmig1imepITLS6_tXfshHRQXRhTBJrOWDl-hR8dTo6y-cB7NH5Bvr0zKd8HXztyDUl3-wx1L4_4ixUfIN237ivFnnhQw-zSD-4VYVQusa3xB-mVQnVI39xvgaiO3ZTQEU4utQh-5i_bmZv0XK1eJ9NlxHERh0juS1UpjKLhQBEkcVaAaY4EenOThBkYhItM4U6gRRBdENlTVpkuDPSatglQ6bOujZ4ooBF_hlcDeGUS5H3huV_DMsvhnU8eeZ16_zg29B0X_7D-QaFCXZO</recordid><startdate>20180102</startdate><enddate>20180102</enddate><creator>Maddi, Balakrishna</creator><creator>Viamajala, Sridhar</creator><creator>Varanasi, Sasidhar</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5353-6026</orcidid><orcidid>https://orcid.org/0000-0003-3131-7847</orcidid></search><sort><creationdate>20180102</creationdate><title>Pyrolytic Fractionation: A Promising Thermochemical Technique for Processing Oleaginous (Algal) Biomass</title><author>Maddi, Balakrishna ; Viamajala, Sridhar ; Varanasi, Sasidhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-1bf5757cef0aee07285ae6e406dc4ea13938175e83a6ea0dc45c96f7ed91c8ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maddi, Balakrishna</creatorcontrib><creatorcontrib>Viamajala, Sridhar</creatorcontrib><creatorcontrib>Varanasi, Sasidhar</creatorcontrib><collection>CrossRef</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maddi, Balakrishna</au><au>Viamajala, Sridhar</au><au>Varanasi, Sasidhar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyrolytic Fractionation: A Promising Thermochemical Technique for Processing Oleaginous (Algal) Biomass</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2018-01-02</date><risdate>2018</risdate><volume>6</volume><issue>1</issue><spage>237</spage><epage>247</epage><pages>237-247</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>We report the development of a two-step pyrolytic fractionation approach that is especially applicable to processing oleaginous algae feed stocks. The first step is a low-temperature pyrolysis (T ∼ 300–320 °C) to produce bio-oils from degradation of protein and carbohydrate fractions. Solid residues left behind can subsequently be subjected to a second higher temperature pyrolysis (T ∼ 420–430 °C) to volatilize and/or degrade triglycerides to produce fatty acids, their derivatives, and long chain hydrocarbons. Thus, pyrolytic fractionation can be used to “fractionate” oleaginous biomass and separately recover triglyceride degradation products. Proof-of-concept micropyrolyzer and subsequent lab-scale fixed-bed experiments were performed using oleaginous Chlorella sp. and Scenedesmus sp. to demonstrate the pyrolytic fractionation technique and determine bio-oil yields. As expected, triglyceride-specific bio-oils were rich in hydrocarbons and free fatty acids, were nearly free of water, short-chain organic acids, and other carbohydrate degradation products, and had low N-content. Due to production of “high quality” triglyceride-specific bio-oil vapors, pyrolytic fractionation would allow product upgrading via in situ gas-phase catalytic processes to generate drop-in fuels (hydrocarbons) or specialty chemicals (e.g., fatty amides), without the need to condense the vapors. A conceptual process design is developed and energy requirements for pyrolytic fractionation are assessed and discussed.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.7b02309</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5353-6026</orcidid><orcidid>https://orcid.org/0000-0003-3131-7847</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2018-01, Vol.6 (1), p.237-247
issn 2168-0485
2168-0485
language eng
recordid cdi_crossref_primary_10_1021_acssuschemeng_7b02309
source ACS Publications
title Pyrolytic Fractionation: A Promising Thermochemical Technique for Processing Oleaginous (Algal) Biomass
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyrolytic%20Fractionation:%20A%20Promising%20Thermochemical%20Technique%20for%20Processing%20Oleaginous%20(Algal)%20Biomass&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Maddi,%20Balakrishna&rft.date=2018-01-02&rft.volume=6&rft.issue=1&rft.spage=237&rft.epage=247&rft.pages=237-247&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.7b02309&rft_dat=%3Cacs_cross%3Ea099105195%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true