Phytic Acid Doped Polyaniline Nanofibers for Enhanced Aqueous Copper(II) Adsorption Capability

This study demonstrates the enhanced Cu2+ adsorption capability of polyaniline nanofibers (PAni NFs) by doping of phytic acid. The PAni NFs were synthesized by radical polymerization process using acidic solutions of hydrochloric and phytic acid, yielding chlorinated (Cl-) and phytic acid-doped (Ph-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2017-08, Vol.5 (8), p.6654-6664
Hauptverfasser: Kim, Hyeong Jin, Im, Sungjin, Kim, Jong Chan, Hong, Won G, Shin, Koo, Jeong, Hu Young, Hong, Young Joon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6664
container_issue 8
container_start_page 6654
container_title ACS sustainable chemistry & engineering
container_volume 5
creator Kim, Hyeong Jin
Im, Sungjin
Kim, Jong Chan
Hong, Won G
Shin, Koo
Jeong, Hu Young
Hong, Young Joon
description This study demonstrates the enhanced Cu2+ adsorption capability of polyaniline nanofibers (PAni NFs) by doping of phytic acid. The PAni NFs were synthesized by radical polymerization process using acidic solutions of hydrochloric and phytic acid, yielding chlorinated (Cl-) and phytic acid-doped (Ph-) PAni NFs. The Ph-PAni NFs showed remarkably higher Cu2+-adsorption efficiency than Cl-PAni NFs, presumably owing to high capacity and/or high ionic affinity of the doped phytic acid in Ph-PAni NFs. The pH-dependent adsorption capability exhibited increasing Cu2+ adsorption trend as increasing aqueous pH because of spontaneous deprotonation of the doped phytic acid in a basic environment. Furthermore, Ph-PAni NFs showed stable, high Cu2+ adsorption capability, irrespective of Co2+ concentration in the bimetallic Cu and Co aqueous solution. Surface morphologies of PAni NFs were investigated using electron microscopy, and molecular structures were identified using X-ray photoemission and Fourier transform infrared spectroscopies. The ability of PAni NFs to capture aqueous Cu2+ is discussed in terms of surface functional groups doped to NFs. Surface modification and/or doping to enhance the adsorption capability of Cu­(II) introduced in this study will provide a great venue for expanding the use of many other polymeric nanostructures for reclamation in metal mining as well as the conventional environmental applications such as water purification.
doi_str_mv 10.1021/acssuschemeng.7b00898
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssuschemeng_7b00898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c371231414</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-f36aa51bf57bb9b44c5f83ebe10c5e0ba38d5418bf81015027cbf8e3cc94e65a3</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EElXpT0DyCEOKncSpM0ahlEoVdICVyHbO1FVrBzsZ8u8xageYuOWedPeenj6EbimZU5LSB6FCGILawRHs53whCeElv0CTlBY8ITlnl7_0NZqFsCdxyjJLOZ2gj-1u7I3ClTItfnQdtHjrDqOw5mAs4BdhnTYSfMDaeby0O2FV_Km-BnBDwLXrOvB36_U9rtrgfNcbZ3EtOiFjQD_eoCstDgFm5z1F70_Lt_o52byu1nW1SURW0D7RWSEEo1KzhZSlzHPFNM9AAiWKAZEi4y3LKZeaU0IZSRcqSsiUKnMomMimiJ1ylXcheNBN581R-LGhpPnh1Pzh1Jw5RR89-eK52bvB29jyH883BJJyOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phytic Acid Doped Polyaniline Nanofibers for Enhanced Aqueous Copper(II) Adsorption Capability</title><source>American Chemical Society Journals</source><creator>Kim, Hyeong Jin ; Im, Sungjin ; Kim, Jong Chan ; Hong, Won G ; Shin, Koo ; Jeong, Hu Young ; Hong, Young Joon</creator><creatorcontrib>Kim, Hyeong Jin ; Im, Sungjin ; Kim, Jong Chan ; Hong, Won G ; Shin, Koo ; Jeong, Hu Young ; Hong, Young Joon</creatorcontrib><description>This study demonstrates the enhanced Cu2+ adsorption capability of polyaniline nanofibers (PAni NFs) by doping of phytic acid. The PAni NFs were synthesized by radical polymerization process using acidic solutions of hydrochloric and phytic acid, yielding chlorinated (Cl-) and phytic acid-doped (Ph-) PAni NFs. The Ph-PAni NFs showed remarkably higher Cu2+-adsorption efficiency than Cl-PAni NFs, presumably owing to high capacity and/or high ionic affinity of the doped phytic acid in Ph-PAni NFs. The pH-dependent adsorption capability exhibited increasing Cu2+ adsorption trend as increasing aqueous pH because of spontaneous deprotonation of the doped phytic acid in a basic environment. Furthermore, Ph-PAni NFs showed stable, high Cu2+ adsorption capability, irrespective of Co2+ concentration in the bimetallic Cu and Co aqueous solution. Surface morphologies of PAni NFs were investigated using electron microscopy, and molecular structures were identified using X-ray photoemission and Fourier transform infrared spectroscopies. The ability of PAni NFs to capture aqueous Cu2+ is discussed in terms of surface functional groups doped to NFs. Surface modification and/or doping to enhance the adsorption capability of Cu­(II) introduced in this study will provide a great venue for expanding the use of many other polymeric nanostructures for reclamation in metal mining as well as the conventional environmental applications such as water purification.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.7b00898</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2017-08, Vol.5 (8), p.6654-6664</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-f36aa51bf57bb9b44c5f83ebe10c5e0ba38d5418bf81015027cbf8e3cc94e65a3</citedby><cites>FETCH-LOGICAL-a361t-f36aa51bf57bb9b44c5f83ebe10c5e0ba38d5418bf81015027cbf8e3cc94e65a3</cites><orcidid>0000-0002-1831-8004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.7b00898$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.7b00898$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Kim, Hyeong Jin</creatorcontrib><creatorcontrib>Im, Sungjin</creatorcontrib><creatorcontrib>Kim, Jong Chan</creatorcontrib><creatorcontrib>Hong, Won G</creatorcontrib><creatorcontrib>Shin, Koo</creatorcontrib><creatorcontrib>Jeong, Hu Young</creatorcontrib><creatorcontrib>Hong, Young Joon</creatorcontrib><title>Phytic Acid Doped Polyaniline Nanofibers for Enhanced Aqueous Copper(II) Adsorption Capability</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>This study demonstrates the enhanced Cu2+ adsorption capability of polyaniline nanofibers (PAni NFs) by doping of phytic acid. The PAni NFs were synthesized by radical polymerization process using acidic solutions of hydrochloric and phytic acid, yielding chlorinated (Cl-) and phytic acid-doped (Ph-) PAni NFs. The Ph-PAni NFs showed remarkably higher Cu2+-adsorption efficiency than Cl-PAni NFs, presumably owing to high capacity and/or high ionic affinity of the doped phytic acid in Ph-PAni NFs. The pH-dependent adsorption capability exhibited increasing Cu2+ adsorption trend as increasing aqueous pH because of spontaneous deprotonation of the doped phytic acid in a basic environment. Furthermore, Ph-PAni NFs showed stable, high Cu2+ adsorption capability, irrespective of Co2+ concentration in the bimetallic Cu and Co aqueous solution. Surface morphologies of PAni NFs were investigated using electron microscopy, and molecular structures were identified using X-ray photoemission and Fourier transform infrared spectroscopies. The ability of PAni NFs to capture aqueous Cu2+ is discussed in terms of surface functional groups doped to NFs. Surface modification and/or doping to enhance the adsorption capability of Cu­(II) introduced in this study will provide a great venue for expanding the use of many other polymeric nanostructures for reclamation in metal mining as well as the conventional environmental applications such as water purification.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhS0EElXpT0DyCEOKncSpM0ahlEoVdICVyHbO1FVrBzsZ8u8xageYuOWedPeenj6EbimZU5LSB6FCGILawRHs53whCeElv0CTlBY8ITlnl7_0NZqFsCdxyjJLOZ2gj-1u7I3ClTItfnQdtHjrDqOw5mAs4BdhnTYSfMDaeby0O2FV_Km-BnBDwLXrOvB36_U9rtrgfNcbZ3EtOiFjQD_eoCstDgFm5z1F70_Lt_o52byu1nW1SURW0D7RWSEEo1KzhZSlzHPFNM9AAiWKAZEi4y3LKZeaU0IZSRcqSsiUKnMomMimiJ1ylXcheNBN581R-LGhpPnh1Pzh1Jw5RR89-eK52bvB29jyH883BJJyOg</recordid><startdate>20170807</startdate><enddate>20170807</enddate><creator>Kim, Hyeong Jin</creator><creator>Im, Sungjin</creator><creator>Kim, Jong Chan</creator><creator>Hong, Won G</creator><creator>Shin, Koo</creator><creator>Jeong, Hu Young</creator><creator>Hong, Young Joon</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1831-8004</orcidid></search><sort><creationdate>20170807</creationdate><title>Phytic Acid Doped Polyaniline Nanofibers for Enhanced Aqueous Copper(II) Adsorption Capability</title><author>Kim, Hyeong Jin ; Im, Sungjin ; Kim, Jong Chan ; Hong, Won G ; Shin, Koo ; Jeong, Hu Young ; Hong, Young Joon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-f36aa51bf57bb9b44c5f83ebe10c5e0ba38d5418bf81015027cbf8e3cc94e65a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hyeong Jin</creatorcontrib><creatorcontrib>Im, Sungjin</creatorcontrib><creatorcontrib>Kim, Jong Chan</creatorcontrib><creatorcontrib>Hong, Won G</creatorcontrib><creatorcontrib>Shin, Koo</creatorcontrib><creatorcontrib>Jeong, Hu Young</creatorcontrib><creatorcontrib>Hong, Young Joon</creatorcontrib><collection>CrossRef</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hyeong Jin</au><au>Im, Sungjin</au><au>Kim, Jong Chan</au><au>Hong, Won G</au><au>Shin, Koo</au><au>Jeong, Hu Young</au><au>Hong, Young Joon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phytic Acid Doped Polyaniline Nanofibers for Enhanced Aqueous Copper(II) Adsorption Capability</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2017-08-07</date><risdate>2017</risdate><volume>5</volume><issue>8</issue><spage>6654</spage><epage>6664</epage><pages>6654-6664</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>This study demonstrates the enhanced Cu2+ adsorption capability of polyaniline nanofibers (PAni NFs) by doping of phytic acid. The PAni NFs were synthesized by radical polymerization process using acidic solutions of hydrochloric and phytic acid, yielding chlorinated (Cl-) and phytic acid-doped (Ph-) PAni NFs. The Ph-PAni NFs showed remarkably higher Cu2+-adsorption efficiency than Cl-PAni NFs, presumably owing to high capacity and/or high ionic affinity of the doped phytic acid in Ph-PAni NFs. The pH-dependent adsorption capability exhibited increasing Cu2+ adsorption trend as increasing aqueous pH because of spontaneous deprotonation of the doped phytic acid in a basic environment. Furthermore, Ph-PAni NFs showed stable, high Cu2+ adsorption capability, irrespective of Co2+ concentration in the bimetallic Cu and Co aqueous solution. Surface morphologies of PAni NFs were investigated using electron microscopy, and molecular structures were identified using X-ray photoemission and Fourier transform infrared spectroscopies. The ability of PAni NFs to capture aqueous Cu2+ is discussed in terms of surface functional groups doped to NFs. Surface modification and/or doping to enhance the adsorption capability of Cu­(II) introduced in this study will provide a great venue for expanding the use of many other polymeric nanostructures for reclamation in metal mining as well as the conventional environmental applications such as water purification.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.7b00898</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1831-8004</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2017-08, Vol.5 (8), p.6654-6664
issn 2168-0485
2168-0485
language eng
recordid cdi_crossref_primary_10_1021_acssuschemeng_7b00898
source American Chemical Society Journals
title Phytic Acid Doped Polyaniline Nanofibers for Enhanced Aqueous Copper(II) Adsorption Capability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A02%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phytic%20Acid%20Doped%20Polyaniline%20Nanofibers%20for%20Enhanced%20Aqueous%20Copper(II)%20Adsorption%20Capability&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Kim,%20Hyeong%20Jin&rft.date=2017-08-07&rft.volume=5&rft.issue=8&rft.spage=6654&rft.epage=6664&rft.pages=6654-6664&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.7b00898&rft_dat=%3Cacs_cross%3Ec371231414%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true