Magnetic Nanohybrid Decorated Porous Organic Polymer: Synergistic Catalyst for High Performance Levulinic Acid Hydrogenation
Herein we have developed a highly active, robust, and selective porous organic polymer (PPTPA-1, POP) encapsulated magnetically retrievable Pd-Fe3O4 nanohybrid catalyst in a one-step solvothermal route and investigated its catalytic performance in levulinic acid (LA) hydrogenation, a key platform mo...
Gespeichert in:
Veröffentlicht in: | ACS sustainable chemistry & engineering 2017-01, Vol.5 (1), p.1033-1045 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1045 |
---|---|
container_issue | 1 |
container_start_page | 1033 |
container_title | ACS sustainable chemistry & engineering |
container_volume | 5 |
creator | Dhanalaxmi, Karnekanti Singuru, Ramana Mondal, Sujan Bai, Linyi Reddy, Benjaram Mahipal Bhaumik, Asim Mondal, John |
description | Herein we have developed a highly active, robust, and selective porous organic polymer (PPTPA-1, POP) encapsulated magnetically retrievable Pd-Fe3O4 nanohybrid catalyst in a one-step solvothermal route and investigated its catalytic performance in levulinic acid (LA) hydrogenation, a key platform molecule in many biorefinery schemes, to γ-valerolactone (GVL), employing formic acid as sustainable H2 source. The specific textural and chemical characteristics of as-synthesized nanohybrid materials were identified by XRD, XPS, FT-IR, 13C CP MAS NMR, HR-TEM, and FE-SEM with the corresponding elemental mapping and nitrogen physisorption studies. It was found that the nanohybrid Pd-Fe3O4/PPTPA-1 catalyst exhibited a substantially enhanced activity in comparison with the monometallic catalysts (Pd/PPTPA-1 and Fe3O4/PPTPA-1). Evidence of the electronic interaction between Pd and Fe attributable to the intrinsic hybrid synergistic effect is thought to be responsible for this superior catalytic performance and improvement in catalyst stability. The recycling experiments revealed that the magnetic nanohybrid catalyst sustained remarkable recycling efficiency and magnetism after being used in 10 successive catalytic runs, which made Pd-Fe3O4/PPTPA-1 a potential catalyst for the production of GVL in industry. |
doi_str_mv | 10.1021/acssuschemeng.6b02338 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssuschemeng_6b02338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c8792303</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-61e3d330a3bbbbdaab78c3621c5e823884199d1f6af305ed4710ab59f01224183</originalsourceid><addsrcrecordid>eNqFkN1Kw0AQhRdRsNQ-grAvkLo_SbrxrtSfCtUW1Osw2UzSlGRXdhMh4MO7xV7oledmDsx8h-EQcs3ZnDPBb0B7P3i9xw5NPU8LJqRUZ2QieKoiFqvk_Je_JDPvDywoy6RQfEK-nqE22DeavoCx-7FwTUnvUFsHPZZ0Z50dPN26Gky42dl27NDd0tfRoKsbfwRX0EM7-p5W1tF1U-_pDl3wHRiNdIOfQ9sc4aUO0euxdLZGA31jzRW5qKD1ODvNKXl_uH9braPN9vFptdxEILKkj1KOspSSgSyCSoBiobRMBdcJKiGVinmWlbxKoZIswTJecAZFklWMCxFzJack-cnVznrvsMo_XNOBG3PO8mOL-Z8W81OLgeM_XFjnBzs4E778h_kGfFN9Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Magnetic Nanohybrid Decorated Porous Organic Polymer: Synergistic Catalyst for High Performance Levulinic Acid Hydrogenation</title><source>ACS_美国化学学会期刊(与NSTL共建)</source><creator>Dhanalaxmi, Karnekanti ; Singuru, Ramana ; Mondal, Sujan ; Bai, Linyi ; Reddy, Benjaram Mahipal ; Bhaumik, Asim ; Mondal, John</creator><creatorcontrib>Dhanalaxmi, Karnekanti ; Singuru, Ramana ; Mondal, Sujan ; Bai, Linyi ; Reddy, Benjaram Mahipal ; Bhaumik, Asim ; Mondal, John</creatorcontrib><description>Herein we have developed a highly active, robust, and selective porous organic polymer (PPTPA-1, POP) encapsulated magnetically retrievable Pd-Fe3O4 nanohybrid catalyst in a one-step solvothermal route and investigated its catalytic performance in levulinic acid (LA) hydrogenation, a key platform molecule in many biorefinery schemes, to γ-valerolactone (GVL), employing formic acid as sustainable H2 source. The specific textural and chemical characteristics of as-synthesized nanohybrid materials were identified by XRD, XPS, FT-IR, 13C CP MAS NMR, HR-TEM, and FE-SEM with the corresponding elemental mapping and nitrogen physisorption studies. It was found that the nanohybrid Pd-Fe3O4/PPTPA-1 catalyst exhibited a substantially enhanced activity in comparison with the monometallic catalysts (Pd/PPTPA-1 and Fe3O4/PPTPA-1). Evidence of the electronic interaction between Pd and Fe attributable to the intrinsic hybrid synergistic effect is thought to be responsible for this superior catalytic performance and improvement in catalyst stability. The recycling experiments revealed that the magnetic nanohybrid catalyst sustained remarkable recycling efficiency and magnetism after being used in 10 successive catalytic runs, which made Pd-Fe3O4/PPTPA-1 a potential catalyst for the production of GVL in industry.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.6b02338</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry & engineering, 2017-01, Vol.5 (1), p.1033-1045</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-61e3d330a3bbbbdaab78c3621c5e823884199d1f6af305ed4710ab59f01224183</citedby><cites>FETCH-LOGICAL-a295t-61e3d330a3bbbbdaab78c3621c5e823884199d1f6af305ed4710ab59f01224183</cites><orcidid>0000-0001-7813-2108 ; 0000-0002-4907-7418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.6b02338$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.6b02338$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Dhanalaxmi, Karnekanti</creatorcontrib><creatorcontrib>Singuru, Ramana</creatorcontrib><creatorcontrib>Mondal, Sujan</creatorcontrib><creatorcontrib>Bai, Linyi</creatorcontrib><creatorcontrib>Reddy, Benjaram Mahipal</creatorcontrib><creatorcontrib>Bhaumik, Asim</creatorcontrib><creatorcontrib>Mondal, John</creatorcontrib><title>Magnetic Nanohybrid Decorated Porous Organic Polymer: Synergistic Catalyst for High Performance Levulinic Acid Hydrogenation</title><title>ACS sustainable chemistry & engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Herein we have developed a highly active, robust, and selective porous organic polymer (PPTPA-1, POP) encapsulated magnetically retrievable Pd-Fe3O4 nanohybrid catalyst in a one-step solvothermal route and investigated its catalytic performance in levulinic acid (LA) hydrogenation, a key platform molecule in many biorefinery schemes, to γ-valerolactone (GVL), employing formic acid as sustainable H2 source. The specific textural and chemical characteristics of as-synthesized nanohybrid materials were identified by XRD, XPS, FT-IR, 13C CP MAS NMR, HR-TEM, and FE-SEM with the corresponding elemental mapping and nitrogen physisorption studies. It was found that the nanohybrid Pd-Fe3O4/PPTPA-1 catalyst exhibited a substantially enhanced activity in comparison with the monometallic catalysts (Pd/PPTPA-1 and Fe3O4/PPTPA-1). Evidence of the electronic interaction between Pd and Fe attributable to the intrinsic hybrid synergistic effect is thought to be responsible for this superior catalytic performance and improvement in catalyst stability. The recycling experiments revealed that the magnetic nanohybrid catalyst sustained remarkable recycling efficiency and magnetism after being used in 10 successive catalytic runs, which made Pd-Fe3O4/PPTPA-1 a potential catalyst for the production of GVL in industry.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkN1Kw0AQhRdRsNQ-grAvkLo_SbrxrtSfCtUW1Osw2UzSlGRXdhMh4MO7xV7oledmDsx8h-EQcs3ZnDPBb0B7P3i9xw5NPU8LJqRUZ2QieKoiFqvk_Je_JDPvDywoy6RQfEK-nqE22DeavoCx-7FwTUnvUFsHPZZ0Z50dPN26Gky42dl27NDd0tfRoKsbfwRX0EM7-p5W1tF1U-_pDl3wHRiNdIOfQ9sc4aUO0euxdLZGA31jzRW5qKD1ODvNKXl_uH9braPN9vFptdxEILKkj1KOspSSgSyCSoBiobRMBdcJKiGVinmWlbxKoZIswTJecAZFklWMCxFzJack-cnVznrvsMo_XNOBG3PO8mOL-Z8W81OLgeM_XFjnBzs4E778h_kGfFN9Tw</recordid><startdate>20170103</startdate><enddate>20170103</enddate><creator>Dhanalaxmi, Karnekanti</creator><creator>Singuru, Ramana</creator><creator>Mondal, Sujan</creator><creator>Bai, Linyi</creator><creator>Reddy, Benjaram Mahipal</creator><creator>Bhaumik, Asim</creator><creator>Mondal, John</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7813-2108</orcidid><orcidid>https://orcid.org/0000-0002-4907-7418</orcidid></search><sort><creationdate>20170103</creationdate><title>Magnetic Nanohybrid Decorated Porous Organic Polymer: Synergistic Catalyst for High Performance Levulinic Acid Hydrogenation</title><author>Dhanalaxmi, Karnekanti ; Singuru, Ramana ; Mondal, Sujan ; Bai, Linyi ; Reddy, Benjaram Mahipal ; Bhaumik, Asim ; Mondal, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-61e3d330a3bbbbdaab78c3621c5e823884199d1f6af305ed4710ab59f01224183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhanalaxmi, Karnekanti</creatorcontrib><creatorcontrib>Singuru, Ramana</creatorcontrib><creatorcontrib>Mondal, Sujan</creatorcontrib><creatorcontrib>Bai, Linyi</creatorcontrib><creatorcontrib>Reddy, Benjaram Mahipal</creatorcontrib><creatorcontrib>Bhaumik, Asim</creatorcontrib><creatorcontrib>Mondal, John</creatorcontrib><collection>CrossRef</collection><jtitle>ACS sustainable chemistry & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhanalaxmi, Karnekanti</au><au>Singuru, Ramana</au><au>Mondal, Sujan</au><au>Bai, Linyi</au><au>Reddy, Benjaram Mahipal</au><au>Bhaumik, Asim</au><au>Mondal, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Nanohybrid Decorated Porous Organic Polymer: Synergistic Catalyst for High Performance Levulinic Acid Hydrogenation</atitle><jtitle>ACS sustainable chemistry & engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2017-01-03</date><risdate>2017</risdate><volume>5</volume><issue>1</issue><spage>1033</spage><epage>1045</epage><pages>1033-1045</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Herein we have developed a highly active, robust, and selective porous organic polymer (PPTPA-1, POP) encapsulated magnetically retrievable Pd-Fe3O4 nanohybrid catalyst in a one-step solvothermal route and investigated its catalytic performance in levulinic acid (LA) hydrogenation, a key platform molecule in many biorefinery schemes, to γ-valerolactone (GVL), employing formic acid as sustainable H2 source. The specific textural and chemical characteristics of as-synthesized nanohybrid materials were identified by XRD, XPS, FT-IR, 13C CP MAS NMR, HR-TEM, and FE-SEM with the corresponding elemental mapping and nitrogen physisorption studies. It was found that the nanohybrid Pd-Fe3O4/PPTPA-1 catalyst exhibited a substantially enhanced activity in comparison with the monometallic catalysts (Pd/PPTPA-1 and Fe3O4/PPTPA-1). Evidence of the electronic interaction between Pd and Fe attributable to the intrinsic hybrid synergistic effect is thought to be responsible for this superior catalytic performance and improvement in catalyst stability. The recycling experiments revealed that the magnetic nanohybrid catalyst sustained remarkable recycling efficiency and magnetism after being used in 10 successive catalytic runs, which made Pd-Fe3O4/PPTPA-1 a potential catalyst for the production of GVL in industry.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.6b02338</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7813-2108</orcidid><orcidid>https://orcid.org/0000-0002-4907-7418</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-0485 |
ispartof | ACS sustainable chemistry & engineering, 2017-01, Vol.5 (1), p.1033-1045 |
issn | 2168-0485 2168-0485 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acssuschemeng_6b02338 |
source | ACS_美国化学学会期刊(与NSTL共建) |
title | Magnetic Nanohybrid Decorated Porous Organic Polymer: Synergistic Catalyst for High Performance Levulinic Acid Hydrogenation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Nanohybrid%20Decorated%20Porous%20Organic%20Polymer:%20Synergistic%20Catalyst%20for%20High%20Performance%20Levulinic%20Acid%20Hydrogenation&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Dhanalaxmi,%20Karnekanti&rft.date=2017-01-03&rft.volume=5&rft.issue=1&rft.spage=1033&rft.epage=1045&rft.pages=1033-1045&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.6b02338&rft_dat=%3Cacs_cross%3Ec8792303%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |