Ionic-Liquid-Assisted Capture of Volatile Low-Carbon Alcohols in Printing Plant Exhaust Gas

In green and sustainable chemical development, the efficient capture of volatile organic compounds (VOCs) with novel green solvents is recognized as an excellent potential research direction. This study proposes a novel method to efficiently absorb alcohols (ethanol, n-propanol, and isopropyl alcoho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2024-04, Vol.12 (14), p.5661-5674
Hauptverfasser: Shang, Zhijie, Xu, Pan, Li, Guoxuan, Zhang, Wanxiang, Chen, Zhengrun, Liu, Qinghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5674
container_issue 14
container_start_page 5661
container_title ACS sustainable chemistry & engineering
container_volume 12
creator Shang, Zhijie
Xu, Pan
Li, Guoxuan
Zhang, Wanxiang
Chen, Zhengrun
Liu, Qinghua
description In green and sustainable chemical development, the efficient capture of volatile organic compounds (VOCs) with novel green solvents is recognized as an excellent potential research direction. This study proposes a novel method to efficiently absorb alcohols (ethanol, n-propanol, and isopropyl alcohol) in VOCs emitted from printing factories by ionic liquids (ILs). The COSMO-RS model screened 256 ILs with Henry’s law constant and selectivity coefficient as separation performance indexes. 1-(2-Hydroxyethyl)-3-methylimidazolium hexafluorophosphate ([HEMIM]­[PF6]) is the most potential absorbent. The absorption performance and interaction mechanism of [HEMIM]­[PF6] on ethanol, n-propanol, and isopropyl alcohol were investigated with a combination of calculation thermodynamics, molecular dynamics, and gas absorption experiments. The alcohol absorption experiments and regeneration experiments of ILs were performed at different IL flow rates, and the results demonstrated that ILs possessed excellent stability and regenerative properties. The excess enthalpy analysis demonstrated the thermodynamic feasibility of capturing alcohol molecules with ILs. Molecular surface electrostatic potential analysis was performed to obtain binding sites for intermolecular interactions. The spatial distribution function revealed the spatial distribution of ILs around alcohol molecules from the perspective of clustered macromolecules. This work provides theoretical insights into molecular thermodynamics and kinetics for developing novel ILs for VOC purification.
doi_str_mv 10.1021/acssuschemeng.4c00552
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssuschemeng_4c00552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153194359</sourcerecordid><originalsourceid>FETCH-LOGICAL-a276t-58706a53cff00203a465f92623282bd2b12803396f1481773c42afd884643ab53</originalsourceid><addsrcrecordid>eNqFkD9PwzAQxSMEElXpR0DyyJLiv4kzVlEplSLBACwMluPYras0bn2JgG9PUDvAxC130r13evdLkluC5wRTcq8NwABma_e228y5wVgIepFMKMlkirkUl7_m62QGsMNjFQWjkkyS93XovEkrfxx8ky4APPS2QaU-9EO0KDj0Flrd-9aiKnykpY516NCiNWEbWkC-Q8_Rd73vNui51V2Plp9bPUCPVhpukiunW7Czc58mrw_Ll_IxrZ5W63JRpZrmWZ8KmeNMC2acw5hipnkmXEEzOiakdUNrQiVmrMgc4ZLkOTOcatdIyTPOdC3YNLk73T3EcBws9Grvwdh2zGPDAIoRwUjBmShGqThJTQwA0Tp1iH6v45ciWP3wVH94qjPP0UdOvnGtdmGI3fjQP55v1Kl8aQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153194359</pqid></control><display><type>article</type><title>Ionic-Liquid-Assisted Capture of Volatile Low-Carbon Alcohols in Printing Plant Exhaust Gas</title><source>ACS Publications</source><creator>Shang, Zhijie ; Xu, Pan ; Li, Guoxuan ; Zhang, Wanxiang ; Chen, Zhengrun ; Liu, Qinghua</creator><creatorcontrib>Shang, Zhijie ; Xu, Pan ; Li, Guoxuan ; Zhang, Wanxiang ; Chen, Zhengrun ; Liu, Qinghua</creatorcontrib><description>In green and sustainable chemical development, the efficient capture of volatile organic compounds (VOCs) with novel green solvents is recognized as an excellent potential research direction. This study proposes a novel method to efficiently absorb alcohols (ethanol, n-propanol, and isopropyl alcohol) in VOCs emitted from printing factories by ionic liquids (ILs). The COSMO-RS model screened 256 ILs with Henry’s law constant and selectivity coefficient as separation performance indexes. 1-(2-Hydroxyethyl)-3-methylimidazolium hexafluorophosphate ([HEMIM]­[PF6]) is the most potential absorbent. The absorption performance and interaction mechanism of [HEMIM]­[PF6] on ethanol, n-propanol, and isopropyl alcohol were investigated with a combination of calculation thermodynamics, molecular dynamics, and gas absorption experiments. The alcohol absorption experiments and regeneration experiments of ILs were performed at different IL flow rates, and the results demonstrated that ILs possessed excellent stability and regenerative properties. The excess enthalpy analysis demonstrated the thermodynamic feasibility of capturing alcohol molecules with ILs. Molecular surface electrostatic potential analysis was performed to obtain binding sites for intermolecular interactions. The spatial distribution function revealed the spatial distribution of ILs around alcohol molecules from the perspective of clustered macromolecules. This work provides theoretical insights into molecular thermodynamics and kinetics for developing novel ILs for VOC purification.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.4c00552</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>1-propanol ; absorbents ; absorption ; enthalpy ; ethanol ; green chemistry ; isopropyl alcohol ; molecular dynamics ; volatile organic compounds</subject><ispartof>ACS sustainable chemistry &amp; engineering, 2024-04, Vol.12 (14), p.5661-5674</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a276t-58706a53cff00203a465f92623282bd2b12803396f1481773c42afd884643ab53</cites><orcidid>0000-0001-8081-9806 ; 0009-0006-9841-785X ; 0000-0002-7298-1819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.4c00552$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.4c00552$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2753,27058,27906,27907,56720,56770</link.rule.ids></links><search><creatorcontrib>Shang, Zhijie</creatorcontrib><creatorcontrib>Xu, Pan</creatorcontrib><creatorcontrib>Li, Guoxuan</creatorcontrib><creatorcontrib>Zhang, Wanxiang</creatorcontrib><creatorcontrib>Chen, Zhengrun</creatorcontrib><creatorcontrib>Liu, Qinghua</creatorcontrib><title>Ionic-Liquid-Assisted Capture of Volatile Low-Carbon Alcohols in Printing Plant Exhaust Gas</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>In green and sustainable chemical development, the efficient capture of volatile organic compounds (VOCs) with novel green solvents is recognized as an excellent potential research direction. This study proposes a novel method to efficiently absorb alcohols (ethanol, n-propanol, and isopropyl alcohol) in VOCs emitted from printing factories by ionic liquids (ILs). The COSMO-RS model screened 256 ILs with Henry’s law constant and selectivity coefficient as separation performance indexes. 1-(2-Hydroxyethyl)-3-methylimidazolium hexafluorophosphate ([HEMIM]­[PF6]) is the most potential absorbent. The absorption performance and interaction mechanism of [HEMIM]­[PF6] on ethanol, n-propanol, and isopropyl alcohol were investigated with a combination of calculation thermodynamics, molecular dynamics, and gas absorption experiments. The alcohol absorption experiments and regeneration experiments of ILs were performed at different IL flow rates, and the results demonstrated that ILs possessed excellent stability and regenerative properties. The excess enthalpy analysis demonstrated the thermodynamic feasibility of capturing alcohol molecules with ILs. Molecular surface electrostatic potential analysis was performed to obtain binding sites for intermolecular interactions. The spatial distribution function revealed the spatial distribution of ILs around alcohol molecules from the perspective of clustered macromolecules. This work provides theoretical insights into molecular thermodynamics and kinetics for developing novel ILs for VOC purification.</description><subject>1-propanol</subject><subject>absorbents</subject><subject>absorption</subject><subject>enthalpy</subject><subject>ethanol</subject><subject>green chemistry</subject><subject>isopropyl alcohol</subject><subject>molecular dynamics</subject><subject>volatile organic compounds</subject><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkD9PwzAQxSMEElXpR0DyyJLiv4kzVlEplSLBACwMluPYras0bn2JgG9PUDvAxC130r13evdLkluC5wRTcq8NwABma_e228y5wVgIepFMKMlkirkUl7_m62QGsMNjFQWjkkyS93XovEkrfxx8ky4APPS2QaU-9EO0KDj0Flrd-9aiKnykpY516NCiNWEbWkC-Q8_Rd73vNui51V2Plp9bPUCPVhpukiunW7Czc58mrw_Ll_IxrZ5W63JRpZrmWZ8KmeNMC2acw5hipnkmXEEzOiakdUNrQiVmrMgc4ZLkOTOcatdIyTPOdC3YNLk73T3EcBws9Grvwdh2zGPDAIoRwUjBmShGqThJTQwA0Tp1iH6v45ciWP3wVH94qjPP0UdOvnGtdmGI3fjQP55v1Kl8aQ</recordid><startdate>20240408</startdate><enddate>20240408</enddate><creator>Shang, Zhijie</creator><creator>Xu, Pan</creator><creator>Li, Guoxuan</creator><creator>Zhang, Wanxiang</creator><creator>Chen, Zhengrun</creator><creator>Liu, Qinghua</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-8081-9806</orcidid><orcidid>https://orcid.org/0009-0006-9841-785X</orcidid><orcidid>https://orcid.org/0000-0002-7298-1819</orcidid></search><sort><creationdate>20240408</creationdate><title>Ionic-Liquid-Assisted Capture of Volatile Low-Carbon Alcohols in Printing Plant Exhaust Gas</title><author>Shang, Zhijie ; Xu, Pan ; Li, Guoxuan ; Zhang, Wanxiang ; Chen, Zhengrun ; Liu, Qinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a276t-58706a53cff00203a465f92623282bd2b12803396f1481773c42afd884643ab53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1-propanol</topic><topic>absorbents</topic><topic>absorption</topic><topic>enthalpy</topic><topic>ethanol</topic><topic>green chemistry</topic><topic>isopropyl alcohol</topic><topic>molecular dynamics</topic><topic>volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Zhijie</creatorcontrib><creatorcontrib>Xu, Pan</creatorcontrib><creatorcontrib>Li, Guoxuan</creatorcontrib><creatorcontrib>Zhang, Wanxiang</creatorcontrib><creatorcontrib>Chen, Zhengrun</creatorcontrib><creatorcontrib>Liu, Qinghua</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Zhijie</au><au>Xu, Pan</au><au>Li, Guoxuan</au><au>Zhang, Wanxiang</au><au>Chen, Zhengrun</au><au>Liu, Qinghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionic-Liquid-Assisted Capture of Volatile Low-Carbon Alcohols in Printing Plant Exhaust Gas</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2024-04-08</date><risdate>2024</risdate><volume>12</volume><issue>14</issue><spage>5661</spage><epage>5674</epage><pages>5661-5674</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>In green and sustainable chemical development, the efficient capture of volatile organic compounds (VOCs) with novel green solvents is recognized as an excellent potential research direction. This study proposes a novel method to efficiently absorb alcohols (ethanol, n-propanol, and isopropyl alcohol) in VOCs emitted from printing factories by ionic liquids (ILs). The COSMO-RS model screened 256 ILs with Henry’s law constant and selectivity coefficient as separation performance indexes. 1-(2-Hydroxyethyl)-3-methylimidazolium hexafluorophosphate ([HEMIM]­[PF6]) is the most potential absorbent. The absorption performance and interaction mechanism of [HEMIM]­[PF6] on ethanol, n-propanol, and isopropyl alcohol were investigated with a combination of calculation thermodynamics, molecular dynamics, and gas absorption experiments. The alcohol absorption experiments and regeneration experiments of ILs were performed at different IL flow rates, and the results demonstrated that ILs possessed excellent stability and regenerative properties. The excess enthalpy analysis demonstrated the thermodynamic feasibility of capturing alcohol molecules with ILs. Molecular surface electrostatic potential analysis was performed to obtain binding sites for intermolecular interactions. The spatial distribution function revealed the spatial distribution of ILs around alcohol molecules from the perspective of clustered macromolecules. This work provides theoretical insights into molecular thermodynamics and kinetics for developing novel ILs for VOC purification.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.4c00552</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8081-9806</orcidid><orcidid>https://orcid.org/0009-0006-9841-785X</orcidid><orcidid>https://orcid.org/0000-0002-7298-1819</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2024-04, Vol.12 (14), p.5661-5674
issn 2168-0485
2168-0485
language eng
recordid cdi_crossref_primary_10_1021_acssuschemeng_4c00552
source ACS Publications
subjects 1-propanol
absorbents
absorption
enthalpy
ethanol
green chemistry
isopropyl alcohol
molecular dynamics
volatile organic compounds
title Ionic-Liquid-Assisted Capture of Volatile Low-Carbon Alcohols in Printing Plant Exhaust Gas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionic-Liquid-Assisted%20Capture%20of%20Volatile%20Low-Carbon%20Alcohols%20in%20Printing%20Plant%20Exhaust%20Gas&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Shang,%20Zhijie&rft.date=2024-04-08&rft.volume=12&rft.issue=14&rft.spage=5661&rft.epage=5674&rft.pages=5661-5674&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.4c00552&rft_dat=%3Cproquest_cross%3E3153194359%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153194359&rft_id=info:pmid/&rfr_iscdi=true