Transforming Sugars into SaltsA Novel Strategy to Reduce Supercooling in Polyol Phase-Change Materials

Phase-change materials (PCMs) that melt in the intermediate temperature range of 100–220 °C can contribute to the utilization of renewable energy. Compounds rich in hydroxyl groups (e.g., sugar alcohols) are promising materials because of their high energy-storage densities and renewability. However...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2024-01, Vol.12 (1), p.623-632
Hauptverfasser: Gaida, Bartlomiej, Kondratowicz, Jan, Piper, Samantha L., Forsyth, Craig M., Chrobok, Anna, Macfarlane, Douglas R., Matuszek, Karolina, Brzeczek-Szafran, Alina
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 632
container_issue 1
container_start_page 623
container_title ACS sustainable chemistry & engineering
container_volume 12
creator Gaida, Bartlomiej
Kondratowicz, Jan
Piper, Samantha L.
Forsyth, Craig M.
Chrobok, Anna
Macfarlane, Douglas R.
Matuszek, Karolina
Brzeczek-Szafran, Alina
description Phase-change materials (PCMs) that melt in the intermediate temperature range of 100–220 °C can contribute to the utilization of renewable energy. Compounds rich in hydroxyl groups (e.g., sugar alcohols) are promising materials because of their high energy-storage densities and renewability. However, supercooling and poor stability under operating conditions currently exclude them from practical application as PCMs in the pure form. In this study, we explore a new strategy to encourage the crystallization of sugars by introducing Coulombic interactions into their structures. The thermal properties of the first carbohydrate-based ionic compounds studied as PCMs are reported, focusing on a glucose-based cation and four different anions, namely, Br– [NO3]−, [OMs]−, and [BF4]−. Combining α-d-glucopyranoside, which typically supercools, with the [NO3]− anion resulted in a salt system that crystallized readily during heating/cooling cycles. The role of hydrogen bonding in dictating the thermal properties was examined by single-crystal X-ray diffraction and Hirshfeld surface analyses.
doi_str_mv 10.1021/acssuschemeng.3c06990
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssuschemeng_3c06990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d170009497</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-e01f613bb5b5252a4ec8dde6e279c85858e9b112494dab07ef5c8d5b38ca949b3</originalsourceid><addsrcrecordid>eNqFkE1qwzAQhUVpoSHNEQq6gFNJthxrGUL_IG1Dk66NJI9_gi0FyS7kJL1KT5UzVCFZtKvOLGbgvW8YHkK3lEwpYfROau8Hr2vowFTTWJNUCHKBRoymWUSSjF_-2q_RxPstCSVEzDI6Qs3GSeNL67rGVHg9VNJ53Jje4rVse3_4-p7jV_sJLV73TvZQ7XHQ3qEYNAT7Dpy2tj2yjcEr2-5ti1e19BAtamkqwC8Bco1s_Q26KsOAyXmO0cfD_WbxFC3fHp8X82UkmeB9BISWKY2V4oozzmQCOisKSIHNhM54aBCKUpaIpJCKzKDkwcBVnGkpEqHiMeKnu9pZ7x2U-c41nXT7nJL8GFn-J7L8HFng6IkLcr61gzPhy3-YH38vd8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transforming Sugars into SaltsA Novel Strategy to Reduce Supercooling in Polyol Phase-Change Materials</title><source>ACS Publications</source><creator>Gaida, Bartlomiej ; Kondratowicz, Jan ; Piper, Samantha L. ; Forsyth, Craig M. ; Chrobok, Anna ; Macfarlane, Douglas R. ; Matuszek, Karolina ; Brzeczek-Szafran, Alina</creator><creatorcontrib>Gaida, Bartlomiej ; Kondratowicz, Jan ; Piper, Samantha L. ; Forsyth, Craig M. ; Chrobok, Anna ; Macfarlane, Douglas R. ; Matuszek, Karolina ; Brzeczek-Szafran, Alina</creatorcontrib><description>Phase-change materials (PCMs) that melt in the intermediate temperature range of 100–220 °C can contribute to the utilization of renewable energy. Compounds rich in hydroxyl groups (e.g., sugar alcohols) are promising materials because of their high energy-storage densities and renewability. However, supercooling and poor stability under operating conditions currently exclude them from practical application as PCMs in the pure form. In this study, we explore a new strategy to encourage the crystallization of sugars by introducing Coulombic interactions into their structures. The thermal properties of the first carbohydrate-based ionic compounds studied as PCMs are reported, focusing on a glucose-based cation and four different anions, namely, Br– [NO3]−, [OMs]−, and [BF4]−. Combining α-d-glucopyranoside, which typically supercools, with the [NO3]− anion resulted in a salt system that crystallized readily during heating/cooling cycles. The role of hydrogen bonding in dictating the thermal properties was examined by single-crystal X-ray diffraction and Hirshfeld surface analyses.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.3c06990</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2024-01, Vol.12 (1), p.623-632</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-e01f613bb5b5252a4ec8dde6e279c85858e9b112494dab07ef5c8d5b38ca949b3</citedby><cites>FETCH-LOGICAL-a295t-e01f613bb5b5252a4ec8dde6e279c85858e9b112494dab07ef5c8d5b38ca949b3</cites><orcidid>0000-0003-4855-7628 ; 0000-0001-8979-5927 ; 0000-0001-5963-9659 ; 0000-0001-7176-7100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.3c06990$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.3c06990$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Gaida, Bartlomiej</creatorcontrib><creatorcontrib>Kondratowicz, Jan</creatorcontrib><creatorcontrib>Piper, Samantha L.</creatorcontrib><creatorcontrib>Forsyth, Craig M.</creatorcontrib><creatorcontrib>Chrobok, Anna</creatorcontrib><creatorcontrib>Macfarlane, Douglas R.</creatorcontrib><creatorcontrib>Matuszek, Karolina</creatorcontrib><creatorcontrib>Brzeczek-Szafran, Alina</creatorcontrib><title>Transforming Sugars into SaltsA Novel Strategy to Reduce Supercooling in Polyol Phase-Change Materials</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Phase-change materials (PCMs) that melt in the intermediate temperature range of 100–220 °C can contribute to the utilization of renewable energy. Compounds rich in hydroxyl groups (e.g., sugar alcohols) are promising materials because of their high energy-storage densities and renewability. However, supercooling and poor stability under operating conditions currently exclude them from practical application as PCMs in the pure form. In this study, we explore a new strategy to encourage the crystallization of sugars by introducing Coulombic interactions into their structures. The thermal properties of the first carbohydrate-based ionic compounds studied as PCMs are reported, focusing on a glucose-based cation and four different anions, namely, Br– [NO3]−, [OMs]−, and [BF4]−. Combining α-d-glucopyranoside, which typically supercools, with the [NO3]− anion resulted in a salt system that crystallized readily during heating/cooling cycles. The role of hydrogen bonding in dictating the thermal properties was examined by single-crystal X-ray diffraction and Hirshfeld surface analyses.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1qwzAQhUVpoSHNEQq6gFNJthxrGUL_IG1Dk66NJI9_gi0FyS7kJL1KT5UzVCFZtKvOLGbgvW8YHkK3lEwpYfROau8Hr2vowFTTWJNUCHKBRoymWUSSjF_-2q_RxPstCSVEzDI6Qs3GSeNL67rGVHg9VNJ53Jje4rVse3_4-p7jV_sJLV73TvZQ7XHQ3qEYNAT7Dpy2tj2yjcEr2-5ti1e19BAtamkqwC8Bco1s_Q26KsOAyXmO0cfD_WbxFC3fHp8X82UkmeB9BISWKY2V4oozzmQCOisKSIHNhM54aBCKUpaIpJCKzKDkwcBVnGkpEqHiMeKnu9pZ7x2U-c41nXT7nJL8GFn-J7L8HFng6IkLcr61gzPhy3-YH38vd8Y</recordid><startdate>20240108</startdate><enddate>20240108</enddate><creator>Gaida, Bartlomiej</creator><creator>Kondratowicz, Jan</creator><creator>Piper, Samantha L.</creator><creator>Forsyth, Craig M.</creator><creator>Chrobok, Anna</creator><creator>Macfarlane, Douglas R.</creator><creator>Matuszek, Karolina</creator><creator>Brzeczek-Szafran, Alina</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4855-7628</orcidid><orcidid>https://orcid.org/0000-0001-8979-5927</orcidid><orcidid>https://orcid.org/0000-0001-5963-9659</orcidid><orcidid>https://orcid.org/0000-0001-7176-7100</orcidid></search><sort><creationdate>20240108</creationdate><title>Transforming Sugars into SaltsA Novel Strategy to Reduce Supercooling in Polyol Phase-Change Materials</title><author>Gaida, Bartlomiej ; Kondratowicz, Jan ; Piper, Samantha L. ; Forsyth, Craig M. ; Chrobok, Anna ; Macfarlane, Douglas R. ; Matuszek, Karolina ; Brzeczek-Szafran, Alina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-e01f613bb5b5252a4ec8dde6e279c85858e9b112494dab07ef5c8d5b38ca949b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaida, Bartlomiej</creatorcontrib><creatorcontrib>Kondratowicz, Jan</creatorcontrib><creatorcontrib>Piper, Samantha L.</creatorcontrib><creatorcontrib>Forsyth, Craig M.</creatorcontrib><creatorcontrib>Chrobok, Anna</creatorcontrib><creatorcontrib>Macfarlane, Douglas R.</creatorcontrib><creatorcontrib>Matuszek, Karolina</creatorcontrib><creatorcontrib>Brzeczek-Szafran, Alina</creatorcontrib><collection>CrossRef</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaida, Bartlomiej</au><au>Kondratowicz, Jan</au><au>Piper, Samantha L.</au><au>Forsyth, Craig M.</au><au>Chrobok, Anna</au><au>Macfarlane, Douglas R.</au><au>Matuszek, Karolina</au><au>Brzeczek-Szafran, Alina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transforming Sugars into SaltsA Novel Strategy to Reduce Supercooling in Polyol Phase-Change Materials</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2024-01-08</date><risdate>2024</risdate><volume>12</volume><issue>1</issue><spage>623</spage><epage>632</epage><pages>623-632</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Phase-change materials (PCMs) that melt in the intermediate temperature range of 100–220 °C can contribute to the utilization of renewable energy. Compounds rich in hydroxyl groups (e.g., sugar alcohols) are promising materials because of their high energy-storage densities and renewability. However, supercooling and poor stability under operating conditions currently exclude them from practical application as PCMs in the pure form. In this study, we explore a new strategy to encourage the crystallization of sugars by introducing Coulombic interactions into their structures. The thermal properties of the first carbohydrate-based ionic compounds studied as PCMs are reported, focusing on a glucose-based cation and four different anions, namely, Br– [NO3]−, [OMs]−, and [BF4]−. Combining α-d-glucopyranoside, which typically supercools, with the [NO3]− anion resulted in a salt system that crystallized readily during heating/cooling cycles. The role of hydrogen bonding in dictating the thermal properties was examined by single-crystal X-ray diffraction and Hirshfeld surface analyses.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.3c06990</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4855-7628</orcidid><orcidid>https://orcid.org/0000-0001-8979-5927</orcidid><orcidid>https://orcid.org/0000-0001-5963-9659</orcidid><orcidid>https://orcid.org/0000-0001-7176-7100</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2024-01, Vol.12 (1), p.623-632
issn 2168-0485
2168-0485
language eng
recordid cdi_crossref_primary_10_1021_acssuschemeng_3c06990
source ACS Publications
title Transforming Sugars into SaltsA Novel Strategy to Reduce Supercooling in Polyol Phase-Change Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transforming%20Sugars%20into%20Salts%EE%97%B8A%20Novel%20Strategy%20to%20Reduce%20Supercooling%20in%20Polyol%20Phase-Change%20Materials&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Gaida,%20Bartlomiej&rft.date=2024-01-08&rft.volume=12&rft.issue=1&rft.spage=623&rft.epage=632&rft.pages=623-632&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.3c06990&rft_dat=%3Cacs_cross%3Ed170009497%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true