P‑Doping Strategy Increasing the Durability of PtCo Nanoparticles for the Oxygen Reduction Reaction

Highly active and durable electrocatalysts for the cathodic oxygen reduction reaction (ORR) are vital for the large-scale commercialization of proton exchange membrane fuel cells. Alloying Pt with transition metals is a promising method to enhance the ORR catalytic activity, but the leaching of tran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2023-08, Vol.11 (31), p.11660-11667
Hauptverfasser: Shen, Jun-Fei, Hu, Sheng-Nan, Tian, Na, Li, Meng-Ying, Yang, Shuang-Li, Tian, Si-Yi, Chen, Ming-Shu, Zhou, Zhi-You, Sun, Shi-Gang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11667
container_issue 31
container_start_page 11660
container_title ACS sustainable chemistry & engineering
container_volume 11
creator Shen, Jun-Fei
Hu, Sheng-Nan
Tian, Na
Li, Meng-Ying
Yang, Shuang-Li
Tian, Si-Yi
Chen, Ming-Shu
Zhou, Zhi-You
Sun, Shi-Gang
description Highly active and durable electrocatalysts for the cathodic oxygen reduction reaction (ORR) are vital for the large-scale commercialization of proton exchange membrane fuel cells. Alloying Pt with transition metals is a promising method to enhance the ORR catalytic activity, but the leaching of transition metals is inevitable, which deteriorates the stability. Here, we report the design of a P-doped PtCo electrocatalyst supported on carbon via a facile one-pot hydrothermal method. On the one hand, the introduction of P into the carbon support by phytic acid can enhance the anchoring ability of the PtCo alloy and inhibit the migration of nanoparticles. On the other hand, the doping of P into the lattice of the PtCo alloy further tunes the electronic effect, which improves activity and stability simultaneously. The mass activity of as-prepared P5-PtCo/C at 0.9 V can reach 0.72 A mgPt –1, which is 4.5 times higher than that of commercial Pt/C. After an accelerated durability test (ADT) of 30,000 potential cycles, the mass activity only decreased by 9.4%. Meanwhile, the average particle size of the catalyst slightly increased from 4.94 to 5.15 nm after the ADT of 70,000 potential cycles. This study provides a facile approach for constructing nonmetal-doped PtM catalysts with improved durability for the ORR.
doi_str_mv 10.1021/acssuschemeng.3c02903
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssuschemeng_3c02903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g03419688</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-5819a869a879a6ba970de16027136393c051b5cb26c926054603e906ea5923503</originalsourceid><addsrcrecordid>eNqFUEtqwzAQFaWFhjRHKOgCTvWJFGtZkn4CoQn9rM1YGTsOiRUkGepdr9Ar9iR10izaVQeGeczMe8w8Qq45G3Im-A3YEJpg17jDuhxKy4Rh8oz0BNdpwkapOv-FL8kghA3rwhgpUt4juPz6-Jy6fVWX9CV6iFi2dFZbjxAOvbhGOm085NW2ii11BV3GiaNPULs9-FjZLQZaOH9cXLy3Jdb0GVeNjZU7IDiCK3JRwDbg4FT75O3-7nXymMwXD7PJ7TwBYVRMVMoNpLrLsQGdgxmzFXLNxJhLLU33nOK5srnQ1gjN1EgziYZpBGWEVEz2ifrRtd6F4LHI9r7agW8zzrKDXdkfu7KTXR2P__C6cbZxja-7K__hfAPpEnPK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>P‑Doping Strategy Increasing the Durability of PtCo Nanoparticles for the Oxygen Reduction Reaction</title><source>American Chemical Society Journals</source><creator>Shen, Jun-Fei ; Hu, Sheng-Nan ; Tian, Na ; Li, Meng-Ying ; Yang, Shuang-Li ; Tian, Si-Yi ; Chen, Ming-Shu ; Zhou, Zhi-You ; Sun, Shi-Gang</creator><creatorcontrib>Shen, Jun-Fei ; Hu, Sheng-Nan ; Tian, Na ; Li, Meng-Ying ; Yang, Shuang-Li ; Tian, Si-Yi ; Chen, Ming-Shu ; Zhou, Zhi-You ; Sun, Shi-Gang</creatorcontrib><description>Highly active and durable electrocatalysts for the cathodic oxygen reduction reaction (ORR) are vital for the large-scale commercialization of proton exchange membrane fuel cells. Alloying Pt with transition metals is a promising method to enhance the ORR catalytic activity, but the leaching of transition metals is inevitable, which deteriorates the stability. Here, we report the design of a P-doped PtCo electrocatalyst supported on carbon via a facile one-pot hydrothermal method. On the one hand, the introduction of P into the carbon support by phytic acid can enhance the anchoring ability of the PtCo alloy and inhibit the migration of nanoparticles. On the other hand, the doping of P into the lattice of the PtCo alloy further tunes the electronic effect, which improves activity and stability simultaneously. The mass activity of as-prepared P5-PtCo/C at 0.9 V can reach 0.72 A mgPt –1, which is 4.5 times higher than that of commercial Pt/C. After an accelerated durability test (ADT) of 30,000 potential cycles, the mass activity only decreased by 9.4%. Meanwhile, the average particle size of the catalyst slightly increased from 4.94 to 5.15 nm after the ADT of 70,000 potential cycles. This study provides a facile approach for constructing nonmetal-doped PtM catalysts with improved durability for the ORR.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.3c02903</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2023-08, Vol.11 (31), p.11660-11667</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-5819a869a879a6ba970de16027136393c051b5cb26c926054603e906ea5923503</citedby><cites>FETCH-LOGICAL-a295t-5819a869a879a6ba970de16027136393c051b5cb26c926054603e906ea5923503</cites><orcidid>0000-0002-8654-6818 ; 0000-0002-4923-9632 ; 0000-0001-5181-0642 ; 0000-0003-2327-4090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.3c02903$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.3c02903$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Shen, Jun-Fei</creatorcontrib><creatorcontrib>Hu, Sheng-Nan</creatorcontrib><creatorcontrib>Tian, Na</creatorcontrib><creatorcontrib>Li, Meng-Ying</creatorcontrib><creatorcontrib>Yang, Shuang-Li</creatorcontrib><creatorcontrib>Tian, Si-Yi</creatorcontrib><creatorcontrib>Chen, Ming-Shu</creatorcontrib><creatorcontrib>Zhou, Zhi-You</creatorcontrib><creatorcontrib>Sun, Shi-Gang</creatorcontrib><title>P‑Doping Strategy Increasing the Durability of PtCo Nanoparticles for the Oxygen Reduction Reaction</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Highly active and durable electrocatalysts for the cathodic oxygen reduction reaction (ORR) are vital for the large-scale commercialization of proton exchange membrane fuel cells. Alloying Pt with transition metals is a promising method to enhance the ORR catalytic activity, but the leaching of transition metals is inevitable, which deteriorates the stability. Here, we report the design of a P-doped PtCo electrocatalyst supported on carbon via a facile one-pot hydrothermal method. On the one hand, the introduction of P into the carbon support by phytic acid can enhance the anchoring ability of the PtCo alloy and inhibit the migration of nanoparticles. On the other hand, the doping of P into the lattice of the PtCo alloy further tunes the electronic effect, which improves activity and stability simultaneously. The mass activity of as-prepared P5-PtCo/C at 0.9 V can reach 0.72 A mgPt –1, which is 4.5 times higher than that of commercial Pt/C. After an accelerated durability test (ADT) of 30,000 potential cycles, the mass activity only decreased by 9.4%. Meanwhile, the average particle size of the catalyst slightly increased from 4.94 to 5.15 nm after the ADT of 70,000 potential cycles. This study provides a facile approach for constructing nonmetal-doped PtM catalysts with improved durability for the ORR.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFUEtqwzAQFaWFhjRHKOgCTvWJFGtZkn4CoQn9rM1YGTsOiRUkGepdr9Ar9iR10izaVQeGeczMe8w8Qq45G3Im-A3YEJpg17jDuhxKy4Rh8oz0BNdpwkapOv-FL8kghA3rwhgpUt4juPz6-Jy6fVWX9CV6iFi2dFZbjxAOvbhGOm085NW2ii11BV3GiaNPULs9-FjZLQZaOH9cXLy3Jdb0GVeNjZU7IDiCK3JRwDbg4FT75O3-7nXymMwXD7PJ7TwBYVRMVMoNpLrLsQGdgxmzFXLNxJhLLU33nOK5srnQ1gjN1EgziYZpBGWEVEz2ifrRtd6F4LHI9r7agW8zzrKDXdkfu7KTXR2P__C6cbZxja-7K__hfAPpEnPK</recordid><startdate>20230807</startdate><enddate>20230807</enddate><creator>Shen, Jun-Fei</creator><creator>Hu, Sheng-Nan</creator><creator>Tian, Na</creator><creator>Li, Meng-Ying</creator><creator>Yang, Shuang-Li</creator><creator>Tian, Si-Yi</creator><creator>Chen, Ming-Shu</creator><creator>Zhou, Zhi-You</creator><creator>Sun, Shi-Gang</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8654-6818</orcidid><orcidid>https://orcid.org/0000-0002-4923-9632</orcidid><orcidid>https://orcid.org/0000-0001-5181-0642</orcidid><orcidid>https://orcid.org/0000-0003-2327-4090</orcidid></search><sort><creationdate>20230807</creationdate><title>P‑Doping Strategy Increasing the Durability of PtCo Nanoparticles for the Oxygen Reduction Reaction</title><author>Shen, Jun-Fei ; Hu, Sheng-Nan ; Tian, Na ; Li, Meng-Ying ; Yang, Shuang-Li ; Tian, Si-Yi ; Chen, Ming-Shu ; Zhou, Zhi-You ; Sun, Shi-Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-5819a869a879a6ba970de16027136393c051b5cb26c926054603e906ea5923503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Jun-Fei</creatorcontrib><creatorcontrib>Hu, Sheng-Nan</creatorcontrib><creatorcontrib>Tian, Na</creatorcontrib><creatorcontrib>Li, Meng-Ying</creatorcontrib><creatorcontrib>Yang, Shuang-Li</creatorcontrib><creatorcontrib>Tian, Si-Yi</creatorcontrib><creatorcontrib>Chen, Ming-Shu</creatorcontrib><creatorcontrib>Zhou, Zhi-You</creatorcontrib><creatorcontrib>Sun, Shi-Gang</creatorcontrib><collection>CrossRef</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Jun-Fei</au><au>Hu, Sheng-Nan</au><au>Tian, Na</au><au>Li, Meng-Ying</au><au>Yang, Shuang-Li</au><au>Tian, Si-Yi</au><au>Chen, Ming-Shu</au><au>Zhou, Zhi-You</au><au>Sun, Shi-Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P‑Doping Strategy Increasing the Durability of PtCo Nanoparticles for the Oxygen Reduction Reaction</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2023-08-07</date><risdate>2023</risdate><volume>11</volume><issue>31</issue><spage>11660</spage><epage>11667</epage><pages>11660-11667</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Highly active and durable electrocatalysts for the cathodic oxygen reduction reaction (ORR) are vital for the large-scale commercialization of proton exchange membrane fuel cells. Alloying Pt with transition metals is a promising method to enhance the ORR catalytic activity, but the leaching of transition metals is inevitable, which deteriorates the stability. Here, we report the design of a P-doped PtCo electrocatalyst supported on carbon via a facile one-pot hydrothermal method. On the one hand, the introduction of P into the carbon support by phytic acid can enhance the anchoring ability of the PtCo alloy and inhibit the migration of nanoparticles. On the other hand, the doping of P into the lattice of the PtCo alloy further tunes the electronic effect, which improves activity and stability simultaneously. The mass activity of as-prepared P5-PtCo/C at 0.9 V can reach 0.72 A mgPt –1, which is 4.5 times higher than that of commercial Pt/C. After an accelerated durability test (ADT) of 30,000 potential cycles, the mass activity only decreased by 9.4%. Meanwhile, the average particle size of the catalyst slightly increased from 4.94 to 5.15 nm after the ADT of 70,000 potential cycles. This study provides a facile approach for constructing nonmetal-doped PtM catalysts with improved durability for the ORR.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.3c02903</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8654-6818</orcidid><orcidid>https://orcid.org/0000-0002-4923-9632</orcidid><orcidid>https://orcid.org/0000-0001-5181-0642</orcidid><orcidid>https://orcid.org/0000-0003-2327-4090</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2023-08, Vol.11 (31), p.11660-11667
issn 2168-0485
2168-0485
language eng
recordid cdi_crossref_primary_10_1021_acssuschemeng_3c02903
source American Chemical Society Journals
title P‑Doping Strategy Increasing the Durability of PtCo Nanoparticles for the Oxygen Reduction Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A58%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P%E2%80%91Doping%20Strategy%20Increasing%20the%20Durability%20of%20PtCo%20Nanoparticles%20for%20the%20Oxygen%20Reduction%20Reaction&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Shen,%20Jun-Fei&rft.date=2023-08-07&rft.volume=11&rft.issue=31&rft.spage=11660&rft.epage=11667&rft.pages=11660-11667&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.3c02903&rft_dat=%3Cacs_cross%3Eg03419688%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true