Highly Efficient Electrochemical Synthesis of Hydrogen Peroxide (H2O2) Enabled by Amino Acid Glycine-Derived Metal-Free Nitrogen-Doped Ordered Mesoporous Carbon

Electrocatalytic partial oxygen reduction has been considered a more sustainable approach to the synthesis of hydrogen peroxide (H2O2), as compared with current industrial anthraquinone processes. One key research need is to explore low-cost active electrocatalysts. Here, we report a facile, solvent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2022-05, Vol.10 (17), p.5453-5462
Hauptverfasser: Rawah, Basil Sabri, Albloushi, Mohammad, Li, Wenzhen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5462
container_issue 17
container_start_page 5453
container_title ACS sustainable chemistry & engineering
container_volume 10
creator Rawah, Basil Sabri
Albloushi, Mohammad
Li, Wenzhen
description Electrocatalytic partial oxygen reduction has been considered a more sustainable approach to the synthesis of hydrogen peroxide (H2O2), as compared with current industrial anthraquinone processes. One key research need is to explore low-cost active electrocatalysts. Here, we report a facile, solvent-free method to synthesize a metal-free nitrogen-doped ordered mesoporous carbon (N-OMC) by in situ transforming of glycine (carbon and nitrogen precursors) in the mesoporous SiO2 template (KIT-6) followed by subsequent thermal treatment at different temperatures. Among all samples, the catalyst treated at 800 °C (N-OMC-800), the nitrogen-rich carbon, exhibits outstanding structural properties and porosity, showing the dominant formation of pyrrolic-N and graphitic-N. With combined improved structural properties with the optimal ratio of N-pyrrolic/N-graphitic, P/G carbon provided an outstanding electrocatalytic activity, promoting H2O2 with high selectivity and production rate in alkaline mediums. The N-OMC-800 can achieve a faradaic efficiency (FE) of ∼100% to H2O2 at (0.6 VRHE to 0.4 VRHE) in a H-cell containing 0.1 M KOH. Furthermore, its bulk H2O2 electrosynthesis in our self-designed flow cell confirmed its practical capability by showing a remarkable H2O2 production rate of 9.43 mol gcat–1 h–1 at 0.35 VRHE and maintaining nearly 100% FE at the cathode potential of 0.6 VRHE for 12 h without any degradation.
doi_str_mv 10.1021/acssuschemeng.1c08285
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssuschemeng_1c08285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b541183570</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-63dd8d9959043839c73a67d90fffb2db5686fffdae19399638a3c4d46f0ff67c3</originalsourceid><addsrcrecordid>eNqFUN1KwzAYLaLg0D2CkEu96Gyatksux9ZtwnSCel3S5MuW0SUj6cS-jY9q9nOhV34334Hzw-FE0R1OBjhJ8SMX3u-9WMMWzGqARUJTml9EvRQXNE4yml_-wtdR3_tNEo4xklLci77nerVuOlQqpYUG06KyAdE6e0jUgjforTPtGrz2yCo076SzKzDoFZz90hLQ_Txdpg-oNLxuQKK6Q6OtNhaNhJZo1nRCG4gn4PRnYJ-h5U08dQDoRbfHpHhid4FZOgnuqPB2Z53dezTmrrbmNrpSvPHQP_-b6GNavo_n8WI5exqPFjFPWd7GBZGSSsZylmSEEiaGhBdDyRKlVJ3KOi9oEaDkgBlhrCCUE5HJrFBBUQwFuYnyU65w1nsHqto5veWuq3BSHZau_ixdnZcOPnzyBbra2L0zoeU_nh9SpYlV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Highly Efficient Electrochemical Synthesis of Hydrogen Peroxide (H2O2) Enabled by Amino Acid Glycine-Derived Metal-Free Nitrogen-Doped Ordered Mesoporous Carbon</title><source>ACS Publications</source><creator>Rawah, Basil Sabri ; Albloushi, Mohammad ; Li, Wenzhen</creator><creatorcontrib>Rawah, Basil Sabri ; Albloushi, Mohammad ; Li, Wenzhen</creatorcontrib><description>Electrocatalytic partial oxygen reduction has been considered a more sustainable approach to the synthesis of hydrogen peroxide (H2O2), as compared with current industrial anthraquinone processes. One key research need is to explore low-cost active electrocatalysts. Here, we report a facile, solvent-free method to synthesize a metal-free nitrogen-doped ordered mesoporous carbon (N-OMC) by in situ transforming of glycine (carbon and nitrogen precursors) in the mesoporous SiO2 template (KIT-6) followed by subsequent thermal treatment at different temperatures. Among all samples, the catalyst treated at 800 °C (N-OMC-800), the nitrogen-rich carbon, exhibits outstanding structural properties and porosity, showing the dominant formation of pyrrolic-N and graphitic-N. With combined improved structural properties with the optimal ratio of N-pyrrolic/N-graphitic, P/G carbon provided an outstanding electrocatalytic activity, promoting H2O2 with high selectivity and production rate in alkaline mediums. The N-OMC-800 can achieve a faradaic efficiency (FE) of ∼100% to H2O2 at (0.6 VRHE to 0.4 VRHE) in a H-cell containing 0.1 M KOH. Furthermore, its bulk H2O2 electrosynthesis in our self-designed flow cell confirmed its practical capability by showing a remarkable H2O2 production rate of 9.43 mol gcat–1 h–1 at 0.35 VRHE and maintaining nearly 100% FE at the cathode potential of 0.6 VRHE for 12 h without any degradation.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.1c08285</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2022-05, Vol.10 (17), p.5453-5462</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-63dd8d9959043839c73a67d90fffb2db5686fffdae19399638a3c4d46f0ff67c3</citedby><cites>FETCH-LOGICAL-a295t-63dd8d9959043839c73a67d90fffb2db5686fffdae19399638a3c4d46f0ff67c3</cites><orcidid>0000-0002-1020-5187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.1c08285$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.1c08285$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Rawah, Basil Sabri</creatorcontrib><creatorcontrib>Albloushi, Mohammad</creatorcontrib><creatorcontrib>Li, Wenzhen</creatorcontrib><title>Highly Efficient Electrochemical Synthesis of Hydrogen Peroxide (H2O2) Enabled by Amino Acid Glycine-Derived Metal-Free Nitrogen-Doped Ordered Mesoporous Carbon</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Electrocatalytic partial oxygen reduction has been considered a more sustainable approach to the synthesis of hydrogen peroxide (H2O2), as compared with current industrial anthraquinone processes. One key research need is to explore low-cost active electrocatalysts. Here, we report a facile, solvent-free method to synthesize a metal-free nitrogen-doped ordered mesoporous carbon (N-OMC) by in situ transforming of glycine (carbon and nitrogen precursors) in the mesoporous SiO2 template (KIT-6) followed by subsequent thermal treatment at different temperatures. Among all samples, the catalyst treated at 800 °C (N-OMC-800), the nitrogen-rich carbon, exhibits outstanding structural properties and porosity, showing the dominant formation of pyrrolic-N and graphitic-N. With combined improved structural properties with the optimal ratio of N-pyrrolic/N-graphitic, P/G carbon provided an outstanding electrocatalytic activity, promoting H2O2 with high selectivity and production rate in alkaline mediums. The N-OMC-800 can achieve a faradaic efficiency (FE) of ∼100% to H2O2 at (0.6 VRHE to 0.4 VRHE) in a H-cell containing 0.1 M KOH. Furthermore, its bulk H2O2 electrosynthesis in our self-designed flow cell confirmed its practical capability by showing a remarkable H2O2 production rate of 9.43 mol gcat–1 h–1 at 0.35 VRHE and maintaining nearly 100% FE at the cathode potential of 0.6 VRHE for 12 h without any degradation.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUN1KwzAYLaLg0D2CkEu96Gyatksux9ZtwnSCel3S5MuW0SUj6cS-jY9q9nOhV34334Hzw-FE0R1OBjhJ8SMX3u-9WMMWzGqARUJTml9EvRQXNE4yml_-wtdR3_tNEo4xklLci77nerVuOlQqpYUG06KyAdE6e0jUgjforTPtGrz2yCo076SzKzDoFZz90hLQ_Txdpg-oNLxuQKK6Q6OtNhaNhJZo1nRCG4gn4PRnYJ-h5U08dQDoRbfHpHhid4FZOgnuqPB2Z53dezTmrrbmNrpSvPHQP_-b6GNavo_n8WI5exqPFjFPWd7GBZGSSsZylmSEEiaGhBdDyRKlVJ3KOi9oEaDkgBlhrCCUE5HJrFBBUQwFuYnyU65w1nsHqto5veWuq3BSHZau_ixdnZcOPnzyBbra2L0zoeU_nh9SpYlV</recordid><startdate>20220502</startdate><enddate>20220502</enddate><creator>Rawah, Basil Sabri</creator><creator>Albloushi, Mohammad</creator><creator>Li, Wenzhen</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1020-5187</orcidid></search><sort><creationdate>20220502</creationdate><title>Highly Efficient Electrochemical Synthesis of Hydrogen Peroxide (H2O2) Enabled by Amino Acid Glycine-Derived Metal-Free Nitrogen-Doped Ordered Mesoporous Carbon</title><author>Rawah, Basil Sabri ; Albloushi, Mohammad ; Li, Wenzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-63dd8d9959043839c73a67d90fffb2db5686fffdae19399638a3c4d46f0ff67c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rawah, Basil Sabri</creatorcontrib><creatorcontrib>Albloushi, Mohammad</creatorcontrib><creatorcontrib>Li, Wenzhen</creatorcontrib><collection>CrossRef</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rawah, Basil Sabri</au><au>Albloushi, Mohammad</au><au>Li, Wenzhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Efficient Electrochemical Synthesis of Hydrogen Peroxide (H2O2) Enabled by Amino Acid Glycine-Derived Metal-Free Nitrogen-Doped Ordered Mesoporous Carbon</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2022-05-02</date><risdate>2022</risdate><volume>10</volume><issue>17</issue><spage>5453</spage><epage>5462</epage><pages>5453-5462</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Electrocatalytic partial oxygen reduction has been considered a more sustainable approach to the synthesis of hydrogen peroxide (H2O2), as compared with current industrial anthraquinone processes. One key research need is to explore low-cost active electrocatalysts. Here, we report a facile, solvent-free method to synthesize a metal-free nitrogen-doped ordered mesoporous carbon (N-OMC) by in situ transforming of glycine (carbon and nitrogen precursors) in the mesoporous SiO2 template (KIT-6) followed by subsequent thermal treatment at different temperatures. Among all samples, the catalyst treated at 800 °C (N-OMC-800), the nitrogen-rich carbon, exhibits outstanding structural properties and porosity, showing the dominant formation of pyrrolic-N and graphitic-N. With combined improved structural properties with the optimal ratio of N-pyrrolic/N-graphitic, P/G carbon provided an outstanding electrocatalytic activity, promoting H2O2 with high selectivity and production rate in alkaline mediums. The N-OMC-800 can achieve a faradaic efficiency (FE) of ∼100% to H2O2 at (0.6 VRHE to 0.4 VRHE) in a H-cell containing 0.1 M KOH. Furthermore, its bulk H2O2 electrosynthesis in our self-designed flow cell confirmed its practical capability by showing a remarkable H2O2 production rate of 9.43 mol gcat–1 h–1 at 0.35 VRHE and maintaining nearly 100% FE at the cathode potential of 0.6 VRHE for 12 h without any degradation.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.1c08285</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1020-5187</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2022-05, Vol.10 (17), p.5453-5462
issn 2168-0485
2168-0485
language eng
recordid cdi_crossref_primary_10_1021_acssuschemeng_1c08285
source ACS Publications
title Highly Efficient Electrochemical Synthesis of Hydrogen Peroxide (H2O2) Enabled by Amino Acid Glycine-Derived Metal-Free Nitrogen-Doped Ordered Mesoporous Carbon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A32%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Efficient%20Electrochemical%20Synthesis%20of%20Hydrogen%20Peroxide%20(H2O2)%20Enabled%20by%20Amino%20Acid%20Glycine-Derived%20Metal-Free%20Nitrogen-Doped%20Ordered%20Mesoporous%20Carbon&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Rawah,%20Basil%20Sabri&rft.date=2022-05-02&rft.volume=10&rft.issue=17&rft.spage=5453&rft.epage=5462&rft.pages=5453-5462&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.1c08285&rft_dat=%3Cacs_cross%3Eb541183570%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true