Controlling Radical Intermediates in Photocatalytic Conversion of Low-Carbon-Number Alcohols

Low-carbon number alcohols (LCNAs) are important platform molecules that can be derived from many resources, such as coal, oil, natural gas, biomass, and CO2, creating a route to value-added chemicals and fuels. Semiconductor photocatalysis provides a novel method for converting LCNAs into a variety...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2021-05, Vol.9 (18), p.6188-6202
Hauptverfasser: Gao, Zhuyan, Luo, Nengchao, Huang, Zhipeng, Taylor, Stuart H, Wang, Feng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6202
container_issue 18
container_start_page 6188
container_title ACS sustainable chemistry & engineering
container_volume 9
creator Gao, Zhuyan
Luo, Nengchao
Huang, Zhipeng
Taylor, Stuart H
Wang, Feng
description Low-carbon number alcohols (LCNAs) are important platform molecules that can be derived from many resources, such as coal, oil, natural gas, biomass, and CO2, creating a route to value-added chemicals and fuels. Semiconductor photocatalysis provides a novel method for converting LCNAs into a variety of downstream products. Photocatalysis is initiated by light-excited charge carriers that are highly oxidative and reductive. The polarity and bond dissociation energy (BDE) of Cα–H bonds are small for alcohols, so it can be homolytically dissociated by the participation of photogenerated holes. Consequently, photocatalytic LCNA conversion overcomes the challenge of Cα–H bond activation in thermocatalysis. Apart from carbon radicals generated from Cα–H bond cleavage, many other radicals are formed during photocatalysis, which are active and have multiple conversion pathways, resulting in complex product distributions. In this Perspective, we summarize the methods of controlling the generation of radical intermediates and subsequent reactions in photocatalytic conversion of LCNAs. The intrinsic properties of photocatalysts and external solution environments are the two main factors that affect the selectivity of the final products. On this basis, we summarize the challenges in current photocatalytic conversion of LCNAs and propose directions for future research, with the aim to inspire studies on the selective conversion of small molecular radicals.
doi_str_mv 10.1021/acssuschemeng.1c01066
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssuschemeng_1c01066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b030289420</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-4d5d2e593bc2a767310c71d2039abecb1945ee1194432ba1a384eee48ae1b8503</originalsourceid><addsrcrecordid>eNqFkNtKAzEQhoMoWGofQcgLbM0ke7wsi4dCURG9E5ZJdtpu2U0kSZW-vSvthV45N__AzzcMH2PXIOYgJNygCWEfzJYGsps5GAEiz8_YREJeJiIts_Nf-yWbhbAT41SVkiVM2HvtbPSu7zu74S_YdgZ7vrSR_EBth5EC7yx_3rroDEbsD7EzfGQ-yYfOWe7WfOW-khq9djZ53A-aPF_0xm1dH67YxRr7QLNTTtnb3e1r_ZCsnu6X9WKVoEplTNI2ayVlldJGYpEXCoQpoJVCVajJaKjSjAjGSJXUCKjKlIjSEgl0mQk1ZdnxrvEuBE_r5sN3A_pDA6L5sdT8sdScLI0cHLmxbnZu7-345T_MN5fAcZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlling Radical Intermediates in Photocatalytic Conversion of Low-Carbon-Number Alcohols</title><source>ACS Publications</source><creator>Gao, Zhuyan ; Luo, Nengchao ; Huang, Zhipeng ; Taylor, Stuart H ; Wang, Feng</creator><creatorcontrib>Gao, Zhuyan ; Luo, Nengchao ; Huang, Zhipeng ; Taylor, Stuart H ; Wang, Feng</creatorcontrib><description>Low-carbon number alcohols (LCNAs) are important platform molecules that can be derived from many resources, such as coal, oil, natural gas, biomass, and CO2, creating a route to value-added chemicals and fuels. Semiconductor photocatalysis provides a novel method for converting LCNAs into a variety of downstream products. Photocatalysis is initiated by light-excited charge carriers that are highly oxidative and reductive. The polarity and bond dissociation energy (BDE) of Cα–H bonds are small for alcohols, so it can be homolytically dissociated by the participation of photogenerated holes. Consequently, photocatalytic LCNA conversion overcomes the challenge of Cα–H bond activation in thermocatalysis. Apart from carbon radicals generated from Cα–H bond cleavage, many other radicals are formed during photocatalysis, which are active and have multiple conversion pathways, resulting in complex product distributions. In this Perspective, we summarize the methods of controlling the generation of radical intermediates and subsequent reactions in photocatalytic conversion of LCNAs. The intrinsic properties of photocatalysts and external solution environments are the two main factors that affect the selectivity of the final products. On this basis, we summarize the challenges in current photocatalytic conversion of LCNAs and propose directions for future research, with the aim to inspire studies on the selective conversion of small molecular radicals.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.1c01066</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2021-05, Vol.9 (18), p.6188-6202</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-4d5d2e593bc2a767310c71d2039abecb1945ee1194432ba1a384eee48ae1b8503</citedby><cites>FETCH-LOGICAL-a342t-4d5d2e593bc2a767310c71d2039abecb1945ee1194432ba1a384eee48ae1b8503</cites><orcidid>0000-0002-9820-7856 ; 0000-0002-9167-8743 ; 0000-0001-5965-3901 ; 0000-0002-6137-292X ; 0000-0002-1933-4874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.1c01066$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.1c01066$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Gao, Zhuyan</creatorcontrib><creatorcontrib>Luo, Nengchao</creatorcontrib><creatorcontrib>Huang, Zhipeng</creatorcontrib><creatorcontrib>Taylor, Stuart H</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><title>Controlling Radical Intermediates in Photocatalytic Conversion of Low-Carbon-Number Alcohols</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Low-carbon number alcohols (LCNAs) are important platform molecules that can be derived from many resources, such as coal, oil, natural gas, biomass, and CO2, creating a route to value-added chemicals and fuels. Semiconductor photocatalysis provides a novel method for converting LCNAs into a variety of downstream products. Photocatalysis is initiated by light-excited charge carriers that are highly oxidative and reductive. The polarity and bond dissociation energy (BDE) of Cα–H bonds are small for alcohols, so it can be homolytically dissociated by the participation of photogenerated holes. Consequently, photocatalytic LCNA conversion overcomes the challenge of Cα–H bond activation in thermocatalysis. Apart from carbon radicals generated from Cα–H bond cleavage, many other radicals are formed during photocatalysis, which are active and have multiple conversion pathways, resulting in complex product distributions. In this Perspective, we summarize the methods of controlling the generation of radical intermediates and subsequent reactions in photocatalytic conversion of LCNAs. The intrinsic properties of photocatalysts and external solution environments are the two main factors that affect the selectivity of the final products. On this basis, we summarize the challenges in current photocatalytic conversion of LCNAs and propose directions for future research, with the aim to inspire studies on the selective conversion of small molecular radicals.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkNtKAzEQhoMoWGofQcgLbM0ke7wsi4dCURG9E5ZJdtpu2U0kSZW-vSvthV45N__AzzcMH2PXIOYgJNygCWEfzJYGsps5GAEiz8_YREJeJiIts_Nf-yWbhbAT41SVkiVM2HvtbPSu7zu74S_YdgZ7vrSR_EBth5EC7yx_3rroDEbsD7EzfGQ-yYfOWe7WfOW-khq9djZ53A-aPF_0xm1dH67YxRr7QLNTTtnb3e1r_ZCsnu6X9WKVoEplTNI2ayVlldJGYpEXCoQpoJVCVajJaKjSjAjGSJXUCKjKlIjSEgl0mQk1ZdnxrvEuBE_r5sN3A_pDA6L5sdT8sdScLI0cHLmxbnZu7-345T_MN5fAcZE</recordid><startdate>20210510</startdate><enddate>20210510</enddate><creator>Gao, Zhuyan</creator><creator>Luo, Nengchao</creator><creator>Huang, Zhipeng</creator><creator>Taylor, Stuart H</creator><creator>Wang, Feng</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9820-7856</orcidid><orcidid>https://orcid.org/0000-0002-9167-8743</orcidid><orcidid>https://orcid.org/0000-0001-5965-3901</orcidid><orcidid>https://orcid.org/0000-0002-6137-292X</orcidid><orcidid>https://orcid.org/0000-0002-1933-4874</orcidid></search><sort><creationdate>20210510</creationdate><title>Controlling Radical Intermediates in Photocatalytic Conversion of Low-Carbon-Number Alcohols</title><author>Gao, Zhuyan ; Luo, Nengchao ; Huang, Zhipeng ; Taylor, Stuart H ; Wang, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-4d5d2e593bc2a767310c71d2039abecb1945ee1194432ba1a384eee48ae1b8503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Zhuyan</creatorcontrib><creatorcontrib>Luo, Nengchao</creatorcontrib><creatorcontrib>Huang, Zhipeng</creatorcontrib><creatorcontrib>Taylor, Stuart H</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><collection>CrossRef</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Zhuyan</au><au>Luo, Nengchao</au><au>Huang, Zhipeng</au><au>Taylor, Stuart H</au><au>Wang, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Radical Intermediates in Photocatalytic Conversion of Low-Carbon-Number Alcohols</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2021-05-10</date><risdate>2021</risdate><volume>9</volume><issue>18</issue><spage>6188</spage><epage>6202</epage><pages>6188-6202</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Low-carbon number alcohols (LCNAs) are important platform molecules that can be derived from many resources, such as coal, oil, natural gas, biomass, and CO2, creating a route to value-added chemicals and fuels. Semiconductor photocatalysis provides a novel method for converting LCNAs into a variety of downstream products. Photocatalysis is initiated by light-excited charge carriers that are highly oxidative and reductive. The polarity and bond dissociation energy (BDE) of Cα–H bonds are small for alcohols, so it can be homolytically dissociated by the participation of photogenerated holes. Consequently, photocatalytic LCNA conversion overcomes the challenge of Cα–H bond activation in thermocatalysis. Apart from carbon radicals generated from Cα–H bond cleavage, many other radicals are formed during photocatalysis, which are active and have multiple conversion pathways, resulting in complex product distributions. In this Perspective, we summarize the methods of controlling the generation of radical intermediates and subsequent reactions in photocatalytic conversion of LCNAs. The intrinsic properties of photocatalysts and external solution environments are the two main factors that affect the selectivity of the final products. On this basis, we summarize the challenges in current photocatalytic conversion of LCNAs and propose directions for future research, with the aim to inspire studies on the selective conversion of small molecular radicals.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.1c01066</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9820-7856</orcidid><orcidid>https://orcid.org/0000-0002-9167-8743</orcidid><orcidid>https://orcid.org/0000-0001-5965-3901</orcidid><orcidid>https://orcid.org/0000-0002-6137-292X</orcidid><orcidid>https://orcid.org/0000-0002-1933-4874</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2021-05, Vol.9 (18), p.6188-6202
issn 2168-0485
2168-0485
language eng
recordid cdi_crossref_primary_10_1021_acssuschemeng_1c01066
source ACS Publications
title Controlling Radical Intermediates in Photocatalytic Conversion of Low-Carbon-Number Alcohols
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Radical%20Intermediates%20in%20Photocatalytic%20Conversion%20of%20Low-Carbon-Number%20Alcohols&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Gao,%20Zhuyan&rft.date=2021-05-10&rft.volume=9&rft.issue=18&rft.spage=6188&rft.epage=6202&rft.pages=6188-6202&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.1c01066&rft_dat=%3Cacs_cross%3Eb030289420%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true