A Rare-Earth Samarium Oxide Catalyst for Electrocatalytic Nitrogen Reduction to Ammonia

A new rare-earth Sm2O3 electrocatalyst was explored for an electrochemical dinitrogen reduction reaction (NRR). Theoretical calculations reveal that the surface-exposed Sm atoms of Sm2O3 could effectively catalyze the NRR and restrict hydrogen evolution. Experimentally, we prepared Sm2O3 nanoparticl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2020-09, Vol.8 (37), p.13908-13914
Hauptverfasser: Cheng, Yonghua, Nan, Haifeng, Li, Qingqing, Luo, Yaojing, Chu, Ke
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13914
container_issue 37
container_start_page 13908
container_title ACS sustainable chemistry & engineering
container_volume 8
creator Cheng, Yonghua
Nan, Haifeng
Li, Qingqing
Luo, Yaojing
Chu, Ke
description A new rare-earth Sm2O3 electrocatalyst was explored for an electrochemical dinitrogen reduction reaction (NRR). Theoretical calculations reveal that the surface-exposed Sm atoms of Sm2O3 could effectively catalyze the NRR and restrict hydrogen evolution. Experimentally, we prepared Sm2O3 nanoparticles showing an NH3 yield of 27.2 μg h–1 mg–1 and a Faradaic efficiency of 11.5% at −0.6 V in 0.1 M Na2SO4, together with outstanding stability, thereby implying the potential of Sm2O3 and other rare-earth electrocatalysts for N2 electroreduction.
doi_str_mv 10.1021/acssuschemeng.0c05764
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssuschemeng_0c05764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a973422818</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-874cbcd55e3f630b9f3aad9aacfc4cc85b94f28cb274535769edc78b29f08c63</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOOZ-gpA_0Jk0TZtcjjE_YDiYAy9LeppsGW0jSQru3xvdLvTKc3O-eA_nfRC6p2ROSU4fFIQwBjjoXg_7OQHCq7K4QpOcliIjheDXv-pbNAvhSFJIyXJBJ-h9gbfK62ylfDzgN9Urb8cebz5tq_FSRdWdQsTGebzqNETv4GcWLeBXm9q9HvBWtyNE6wYcHV70vRusukM3RnVBzy55inaPq93yOVtvnl6Wi3WmWEljJqoCGmg518yUjDTSMKVaqRQYKAAEb2RhcgFNXhWcJWtSt1CJJpeGCCjZFPHzWfAuBK9N_eFt8nCqKam_-dR_-NQXPklHz7q0ro9u9EN68h_NF3RXb9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Rare-Earth Samarium Oxide Catalyst for Electrocatalytic Nitrogen Reduction to Ammonia</title><source>ACS Publications</source><creator>Cheng, Yonghua ; Nan, Haifeng ; Li, Qingqing ; Luo, Yaojing ; Chu, Ke</creator><creatorcontrib>Cheng, Yonghua ; Nan, Haifeng ; Li, Qingqing ; Luo, Yaojing ; Chu, Ke</creatorcontrib><description>A new rare-earth Sm2O3 electrocatalyst was explored for an electrochemical dinitrogen reduction reaction (NRR). Theoretical calculations reveal that the surface-exposed Sm atoms of Sm2O3 could effectively catalyze the NRR and restrict hydrogen evolution. Experimentally, we prepared Sm2O3 nanoparticles showing an NH3 yield of 27.2 μg h–1 mg–1 and a Faradaic efficiency of 11.5% at −0.6 V in 0.1 M Na2SO4, together with outstanding stability, thereby implying the potential of Sm2O3 and other rare-earth electrocatalysts for N2 electroreduction.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.0c05764</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2020-09, Vol.8 (37), p.13908-13914</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-874cbcd55e3f630b9f3aad9aacfc4cc85b94f28cb274535769edc78b29f08c63</citedby><cites>FETCH-LOGICAL-a361t-874cbcd55e3f630b9f3aad9aacfc4cc85b94f28cb274535769edc78b29f08c63</cites><orcidid>0000-0002-0606-2689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.0c05764$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.0c05764$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Cheng, Yonghua</creatorcontrib><creatorcontrib>Nan, Haifeng</creatorcontrib><creatorcontrib>Li, Qingqing</creatorcontrib><creatorcontrib>Luo, Yaojing</creatorcontrib><creatorcontrib>Chu, Ke</creatorcontrib><title>A Rare-Earth Samarium Oxide Catalyst for Electrocatalytic Nitrogen Reduction to Ammonia</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>A new rare-earth Sm2O3 electrocatalyst was explored for an electrochemical dinitrogen reduction reaction (NRR). Theoretical calculations reveal that the surface-exposed Sm atoms of Sm2O3 could effectively catalyze the NRR and restrict hydrogen evolution. Experimentally, we prepared Sm2O3 nanoparticles showing an NH3 yield of 27.2 μg h–1 mg–1 and a Faradaic efficiency of 11.5% at −0.6 V in 0.1 M Na2SO4, together with outstanding stability, thereby implying the potential of Sm2O3 and other rare-earth electrocatalysts for N2 electroreduction.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOOZ-gpA_0Jk0TZtcjjE_YDiYAy9LeppsGW0jSQru3xvdLvTKc3O-eA_nfRC6p2ROSU4fFIQwBjjoXg_7OQHCq7K4QpOcliIjheDXv-pbNAvhSFJIyXJBJ-h9gbfK62ylfDzgN9Urb8cebz5tq_FSRdWdQsTGebzqNETv4GcWLeBXm9q9HvBWtyNE6wYcHV70vRusukM3RnVBzy55inaPq93yOVtvnl6Wi3WmWEljJqoCGmg518yUjDTSMKVaqRQYKAAEb2RhcgFNXhWcJWtSt1CJJpeGCCjZFPHzWfAuBK9N_eFt8nCqKam_-dR_-NQXPklHz7q0ro9u9EN68h_NF3RXb9Q</recordid><startdate>20200921</startdate><enddate>20200921</enddate><creator>Cheng, Yonghua</creator><creator>Nan, Haifeng</creator><creator>Li, Qingqing</creator><creator>Luo, Yaojing</creator><creator>Chu, Ke</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0606-2689</orcidid></search><sort><creationdate>20200921</creationdate><title>A Rare-Earth Samarium Oxide Catalyst for Electrocatalytic Nitrogen Reduction to Ammonia</title><author>Cheng, Yonghua ; Nan, Haifeng ; Li, Qingqing ; Luo, Yaojing ; Chu, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-874cbcd55e3f630b9f3aad9aacfc4cc85b94f28cb274535769edc78b29f08c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Yonghua</creatorcontrib><creatorcontrib>Nan, Haifeng</creatorcontrib><creatorcontrib>Li, Qingqing</creatorcontrib><creatorcontrib>Luo, Yaojing</creatorcontrib><creatorcontrib>Chu, Ke</creatorcontrib><collection>CrossRef</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Yonghua</au><au>Nan, Haifeng</au><au>Li, Qingqing</au><au>Luo, Yaojing</au><au>Chu, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Rare-Earth Samarium Oxide Catalyst for Electrocatalytic Nitrogen Reduction to Ammonia</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2020-09-21</date><risdate>2020</risdate><volume>8</volume><issue>37</issue><spage>13908</spage><epage>13914</epage><pages>13908-13914</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>A new rare-earth Sm2O3 electrocatalyst was explored for an electrochemical dinitrogen reduction reaction (NRR). Theoretical calculations reveal that the surface-exposed Sm atoms of Sm2O3 could effectively catalyze the NRR and restrict hydrogen evolution. Experimentally, we prepared Sm2O3 nanoparticles showing an NH3 yield of 27.2 μg h–1 mg–1 and a Faradaic efficiency of 11.5% at −0.6 V in 0.1 M Na2SO4, together with outstanding stability, thereby implying the potential of Sm2O3 and other rare-earth electrocatalysts for N2 electroreduction.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.0c05764</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0606-2689</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2020-09, Vol.8 (37), p.13908-13914
issn 2168-0485
2168-0485
language eng
recordid cdi_crossref_primary_10_1021_acssuschemeng_0c05764
source ACS Publications
title A Rare-Earth Samarium Oxide Catalyst for Electrocatalytic Nitrogen Reduction to Ammonia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A45%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Rare-Earth%20Samarium%20Oxide%20Catalyst%20for%20Electrocatalytic%20Nitrogen%20Reduction%20to%20Ammonia&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Cheng,%20Yonghua&rft.date=2020-09-21&rft.volume=8&rft.issue=37&rft.spage=13908&rft.epage=13914&rft.pages=13908-13914&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.0c05764&rft_dat=%3Cacs_cross%3Ea973422818%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true