N‑Induced Electron Transfer Effect on Low-Temperature Activation of Nitrogen for Ammonia Synthesis over Co-Based Catalysts
The industrial synthesis of ammonia (NH3) using Fe-based derived catalysts requires harsh reaction conditions (400–600 °C, 20–40 MPa). It is desirable to develop catalysts that perform well at low temperature and pressure (
Gespeichert in:
Veröffentlicht in: | ACS sustainable chemistry & engineering 2021-02, Vol.9 (4), p.1529-1539 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1539 |
---|---|
container_issue | 4 |
container_start_page | 1529 |
container_title | ACS sustainable chemistry & engineering |
container_volume | 9 |
creator | Peng, Xuanbei Wang, Congying Tan, Zhenni Ni, Jun Lin, Bingyu Lin, Jianxin Wang, Xiuyun Zheng, Lirong Au, Chak-tong Jiang, Lilong |
description | The industrial synthesis of ammonia (NH3) using Fe-based derived catalysts requires harsh reaction conditions (400–600 °C, 20–40 MPa). It is desirable to develop catalysts that perform well at low temperature and pressure ( |
doi_str_mv | 10.1021/acssuschemeng.0c05491 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssuschemeng_0c05491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a451515763</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-ff78a90e482bea45498320872d0ea9c3162ae2bd62fa543de9c26bdb473de4dd3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIVKWfgOQfSLGdR5NjiQpUqsqBco42zrpN1diV7RRV4sAv8It8CUbtAU7sZVczmtndIeSWszFngt-BdK53coMd6vWYSZYmBb8gA8GzPGJJnl7-mq_JyLktC1UUscj5gLwvvz4-57rpJTZ0tkPprdF0ZUE7hZbOlAoQDdDCvEUr7PZowfcW6VT69gC-DZRRdNkG3Ro1VcbSadcZ3QJ9OWq_Qdc6ag7BqzTRPbiwpgQPu6Pz7oZcKdg5HJ37kLw-zFblU7R4fpyX00UEccZ9pNQkh4JhkosaIQkP5rFg-UQ0DKGQMc8EoKibTChIk7jBQoqsbupkEuakaeIhSU--0hrnLKpqb9sO7LHirPpJsfqTYnVOMej4SRfoamt6q8OV_2i-AS9HflA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>N‑Induced Electron Transfer Effect on Low-Temperature Activation of Nitrogen for Ammonia Synthesis over Co-Based Catalysts</title><source>ACS Publications</source><creator>Peng, Xuanbei ; Wang, Congying ; Tan, Zhenni ; Ni, Jun ; Lin, Bingyu ; Lin, Jianxin ; Wang, Xiuyun ; Zheng, Lirong ; Au, Chak-tong ; Jiang, Lilong</creator><creatorcontrib>Peng, Xuanbei ; Wang, Congying ; Tan, Zhenni ; Ni, Jun ; Lin, Bingyu ; Lin, Jianxin ; Wang, Xiuyun ; Zheng, Lirong ; Au, Chak-tong ; Jiang, Lilong</creatorcontrib><description>The industrial synthesis of ammonia (NH3) using Fe-based derived catalysts requires harsh reaction conditions (400–600 °C, 20–40 MPa). It is desirable to develop catalysts that perform well at low temperature and pressure (<400 °C, <2 MPa). The main challenge of low-temperature NH3 synthesis is the dissociation of the extremely stable NN triple bond (945 kJ/mol). Herein, the N-doped C-supported Co catalyst was demonstrated to be active and efficient for NH3 synthesis under mild conditions, resulting from the hybridization of the d orbitals of Co with p orbitals of nitrogen for Co–N coordination. The doping of N has three relevant effects. The first is the size decrease in Co nanoparticles. It is proven by in situ X-ray photoelectron spectroscopy and synchrotron-based X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses coupled with density functional theory calculation that there is strong electron transfer from the doped N to Co. Hence, the second effect of N doping is the increase in electronic state of Co d orbitals which promotes the donation of 3d electrons from Co to the π* orbital of N2, leading to a decrease in activation energy for the N2 molecule. The third is the involvement of nitrogen vacancies. The pyridine N weakly coordinated with highly dispersed Co reacts with adsorbed H2 to form NH3, simultaneously generating N vacancies; then, the consumed N species can be replenished via N2 adsorption on vacancy sites. These factors contribute to the superiority of the N-doped carbon-supported Co-based catalyst, which achieves an NH3 production rate of 1.59 mmolNH3 ·gcat –1·h–1 at even 250 °C and 1 MPa.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.0c05491</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry & engineering, 2021-02, Vol.9 (4), p.1529-1539</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-ff78a90e482bea45498320872d0ea9c3162ae2bd62fa543de9c26bdb473de4dd3</citedby><cites>FETCH-LOGICAL-a361t-ff78a90e482bea45498320872d0ea9c3162ae2bd62fa543de9c26bdb473de4dd3</cites><orcidid>0000-0003-0855-6196 ; 0000-0001-6879-9195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.0c05491$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.0c05491$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Peng, Xuanbei</creatorcontrib><creatorcontrib>Wang, Congying</creatorcontrib><creatorcontrib>Tan, Zhenni</creatorcontrib><creatorcontrib>Ni, Jun</creatorcontrib><creatorcontrib>Lin, Bingyu</creatorcontrib><creatorcontrib>Lin, Jianxin</creatorcontrib><creatorcontrib>Wang, Xiuyun</creatorcontrib><creatorcontrib>Zheng, Lirong</creatorcontrib><creatorcontrib>Au, Chak-tong</creatorcontrib><creatorcontrib>Jiang, Lilong</creatorcontrib><title>N‑Induced Electron Transfer Effect on Low-Temperature Activation of Nitrogen for Ammonia Synthesis over Co-Based Catalysts</title><title>ACS sustainable chemistry & engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>The industrial synthesis of ammonia (NH3) using Fe-based derived catalysts requires harsh reaction conditions (400–600 °C, 20–40 MPa). It is desirable to develop catalysts that perform well at low temperature and pressure (<400 °C, <2 MPa). The main challenge of low-temperature NH3 synthesis is the dissociation of the extremely stable NN triple bond (945 kJ/mol). Herein, the N-doped C-supported Co catalyst was demonstrated to be active and efficient for NH3 synthesis under mild conditions, resulting from the hybridization of the d orbitals of Co with p orbitals of nitrogen for Co–N coordination. The doping of N has three relevant effects. The first is the size decrease in Co nanoparticles. It is proven by in situ X-ray photoelectron spectroscopy and synchrotron-based X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses coupled with density functional theory calculation that there is strong electron transfer from the doped N to Co. Hence, the second effect of N doping is the increase in electronic state of Co d orbitals which promotes the donation of 3d electrons from Co to the π* orbital of N2, leading to a decrease in activation energy for the N2 molecule. The third is the involvement of nitrogen vacancies. The pyridine N weakly coordinated with highly dispersed Co reacts with adsorbed H2 to form NH3, simultaneously generating N vacancies; then, the consumed N species can be replenished via N2 adsorption on vacancy sites. These factors contribute to the superiority of the N-doped carbon-supported Co-based catalyst, which achieves an NH3 production rate of 1.59 mmolNH3 ·gcat –1·h–1 at even 250 °C and 1 MPa.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIVKWfgOQfSLGdR5NjiQpUqsqBco42zrpN1diV7RRV4sAv8It8CUbtAU7sZVczmtndIeSWszFngt-BdK53coMd6vWYSZYmBb8gA8GzPGJJnl7-mq_JyLktC1UUscj5gLwvvz4-57rpJTZ0tkPprdF0ZUE7hZbOlAoQDdDCvEUr7PZowfcW6VT69gC-DZRRdNkG3Ro1VcbSadcZ3QJ9OWq_Qdc6ag7BqzTRPbiwpgQPu6Pz7oZcKdg5HJ37kLw-zFblU7R4fpyX00UEccZ9pNQkh4JhkosaIQkP5rFg-UQ0DKGQMc8EoKibTChIk7jBQoqsbupkEuakaeIhSU--0hrnLKpqb9sO7LHirPpJsfqTYnVOMej4SRfoamt6q8OV_2i-AS9HflA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Peng, Xuanbei</creator><creator>Wang, Congying</creator><creator>Tan, Zhenni</creator><creator>Ni, Jun</creator><creator>Lin, Bingyu</creator><creator>Lin, Jianxin</creator><creator>Wang, Xiuyun</creator><creator>Zheng, Lirong</creator><creator>Au, Chak-tong</creator><creator>Jiang, Lilong</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0855-6196</orcidid><orcidid>https://orcid.org/0000-0001-6879-9195</orcidid></search><sort><creationdate>20210201</creationdate><title>N‑Induced Electron Transfer Effect on Low-Temperature Activation of Nitrogen for Ammonia Synthesis over Co-Based Catalysts</title><author>Peng, Xuanbei ; Wang, Congying ; Tan, Zhenni ; Ni, Jun ; Lin, Bingyu ; Lin, Jianxin ; Wang, Xiuyun ; Zheng, Lirong ; Au, Chak-tong ; Jiang, Lilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-ff78a90e482bea45498320872d0ea9c3162ae2bd62fa543de9c26bdb473de4dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Xuanbei</creatorcontrib><creatorcontrib>Wang, Congying</creatorcontrib><creatorcontrib>Tan, Zhenni</creatorcontrib><creatorcontrib>Ni, Jun</creatorcontrib><creatorcontrib>Lin, Bingyu</creatorcontrib><creatorcontrib>Lin, Jianxin</creatorcontrib><creatorcontrib>Wang, Xiuyun</creatorcontrib><creatorcontrib>Zheng, Lirong</creatorcontrib><creatorcontrib>Au, Chak-tong</creatorcontrib><creatorcontrib>Jiang, Lilong</creatorcontrib><collection>CrossRef</collection><jtitle>ACS sustainable chemistry & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Xuanbei</au><au>Wang, Congying</au><au>Tan, Zhenni</au><au>Ni, Jun</au><au>Lin, Bingyu</au><au>Lin, Jianxin</au><au>Wang, Xiuyun</au><au>Zheng, Lirong</au><au>Au, Chak-tong</au><au>Jiang, Lilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N‑Induced Electron Transfer Effect on Low-Temperature Activation of Nitrogen for Ammonia Synthesis over Co-Based Catalysts</atitle><jtitle>ACS sustainable chemistry & engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>9</volume><issue>4</issue><spage>1529</spage><epage>1539</epage><pages>1529-1539</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>The industrial synthesis of ammonia (NH3) using Fe-based derived catalysts requires harsh reaction conditions (400–600 °C, 20–40 MPa). It is desirable to develop catalysts that perform well at low temperature and pressure (<400 °C, <2 MPa). The main challenge of low-temperature NH3 synthesis is the dissociation of the extremely stable NN triple bond (945 kJ/mol). Herein, the N-doped C-supported Co catalyst was demonstrated to be active and efficient for NH3 synthesis under mild conditions, resulting from the hybridization of the d orbitals of Co with p orbitals of nitrogen for Co–N coordination. The doping of N has three relevant effects. The first is the size decrease in Co nanoparticles. It is proven by in situ X-ray photoelectron spectroscopy and synchrotron-based X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses coupled with density functional theory calculation that there is strong electron transfer from the doped N to Co. Hence, the second effect of N doping is the increase in electronic state of Co d orbitals which promotes the donation of 3d electrons from Co to the π* orbital of N2, leading to a decrease in activation energy for the N2 molecule. The third is the involvement of nitrogen vacancies. The pyridine N weakly coordinated with highly dispersed Co reacts with adsorbed H2 to form NH3, simultaneously generating N vacancies; then, the consumed N species can be replenished via N2 adsorption on vacancy sites. These factors contribute to the superiority of the N-doped carbon-supported Co-based catalyst, which achieves an NH3 production rate of 1.59 mmolNH3 ·gcat –1·h–1 at even 250 °C and 1 MPa.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.0c05491</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0855-6196</orcidid><orcidid>https://orcid.org/0000-0001-6879-9195</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-0485 |
ispartof | ACS sustainable chemistry & engineering, 2021-02, Vol.9 (4), p.1529-1539 |
issn | 2168-0485 2168-0485 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acssuschemeng_0c05491 |
source | ACS Publications |
title | N‑Induced Electron Transfer Effect on Low-Temperature Activation of Nitrogen for Ammonia Synthesis over Co-Based Catalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N%E2%80%91Induced%20Electron%20Transfer%20Effect%20on%20Low-Temperature%20Activation%20of%20Nitrogen%20for%20Ammonia%20Synthesis%20over%20Co-Based%20Catalysts&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Peng,%20Xuanbei&rft.date=2021-02-01&rft.volume=9&rft.issue=4&rft.spage=1529&rft.epage=1539&rft.pages=1529-1539&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.0c05491&rft_dat=%3Cacs_cross%3Ea451515763%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |