Porous Graphene/Polyimide Membrane with a Three-Dimensional Architecture for Rapid and Efficient Solar Desalination via Interfacial Evaporation

The solar desalination via interfacial evaporation has shown great potential in addressing the freshwater scarcity issue. However, the evaporation rate and solar thermal conversion efficiency of the current photothermal materials (flat membranes, papers, and thin films) have almost been pushed to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2020-09, Vol.8 (36), p.13850-13858
Hauptverfasser: Chen, Zhaochuan, Li, Qiang, Chen, Xuemei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13858
container_issue 36
container_start_page 13850
container_title ACS sustainable chemistry & engineering
container_volume 8
creator Chen, Zhaochuan
Li, Qiang
Chen, Xuemei
description The solar desalination via interfacial evaporation has shown great potential in addressing the freshwater scarcity issue. However, the evaporation rate and solar thermal conversion efficiency of the current photothermal materials (flat membranes, papers, and thin films) have almost been pushed to the upper limit. In order to further improve the energy efficiency, in this work, we developed a highly porous laser-induced graphene/polyimide (LIG/PI) photothermal membrane with a three-dimensional (3D) architecture through electrospinning and laser ablation techniques. The 3D structure of the LIG/PI membrane increases the evaporation area and reduces the energy loss caused by diffuse reflectance of light. With the assistance of a thermal insulator and water pumping channels, the LIG/PI membrane achieves a high evaporation rate of ∼1.42 kg m–2 h–1, a high solar thermal conversion efficiency of ∼92.55%, and long-term evaporation stability in a high-concentration saline solution under 1 sun illumination. Such a stable photothermal membrane may provide important insights into designing rapid and efficient interfacial evaporation systems.
doi_str_mv 10.1021/acssuschemeng.0c05306
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssuschemeng_0c05306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c111233453</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-1816c6746554e66f2b8f6a0dd5feb8dcc96feab9d25492df6476fa39b21caa7c3</originalsourceid><addsrcrecordid>eNqFkNFOwjAUhhejiQR5BJO-wKDt1rJdEkAkwUgUr5ez7tSVbOvSDgxP4Ss7hQu98tyck_z5_pN8QXDP6JhRziagvD94VWKNzfuYKioiKq-CAWcyCWmciOtf920w8n5P-0nTiCdsEHxurbMHT1YO2hIbnGxtdTK1KZA8YZ07aJB8mK4kQHalQwwXpn_kjW2gIjOnStOh6g4OibaOvEBrCgJNQZZaG2Ww6cirrcCRBXqoTANdT5KjAbJuOnQalOl7lkdorfvJ7oIbDZXH0WUPg7eH5W7-GG6eV-v5bBMCT0UXsoRJJaexFCJGKTXPEy2BFoXQmCeFUqnUCHlacBGnvNAynkoNUZpzpgCmKhoG4tyrnPXeoc5aZ2pwp4zR7Fts9kdsdhHbc-zM9XG2twfXe_D_MF98V4VB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Porous Graphene/Polyimide Membrane with a Three-Dimensional Architecture for Rapid and Efficient Solar Desalination via Interfacial Evaporation</title><source>ACS Publications</source><creator>Chen, Zhaochuan ; Li, Qiang ; Chen, Xuemei</creator><creatorcontrib>Chen, Zhaochuan ; Li, Qiang ; Chen, Xuemei</creatorcontrib><description>The solar desalination via interfacial evaporation has shown great potential in addressing the freshwater scarcity issue. However, the evaporation rate and solar thermal conversion efficiency of the current photothermal materials (flat membranes, papers, and thin films) have almost been pushed to the upper limit. In order to further improve the energy efficiency, in this work, we developed a highly porous laser-induced graphene/polyimide (LIG/PI) photothermal membrane with a three-dimensional (3D) architecture through electrospinning and laser ablation techniques. The 3D structure of the LIG/PI membrane increases the evaporation area and reduces the energy loss caused by diffuse reflectance of light. With the assistance of a thermal insulator and water pumping channels, the LIG/PI membrane achieves a high evaporation rate of ∼1.42 kg m–2 h–1, a high solar thermal conversion efficiency of ∼92.55%, and long-term evaporation stability in a high-concentration saline solution under 1 sun illumination. Such a stable photothermal membrane may provide important insights into designing rapid and efficient interfacial evaporation systems.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.0c05306</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2020-09, Vol.8 (36), p.13850-13858</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-1816c6746554e66f2b8f6a0dd5feb8dcc96feab9d25492df6476fa39b21caa7c3</citedby><cites>FETCH-LOGICAL-a295t-1816c6746554e66f2b8f6a0dd5feb8dcc96feab9d25492df6476fa39b21caa7c3</cites><orcidid>0000-0001-8240-2705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.0c05306$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.0c05306$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Chen, Zhaochuan</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Chen, Xuemei</creatorcontrib><title>Porous Graphene/Polyimide Membrane with a Three-Dimensional Architecture for Rapid and Efficient Solar Desalination via Interfacial Evaporation</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>The solar desalination via interfacial evaporation has shown great potential in addressing the freshwater scarcity issue. However, the evaporation rate and solar thermal conversion efficiency of the current photothermal materials (flat membranes, papers, and thin films) have almost been pushed to the upper limit. In order to further improve the energy efficiency, in this work, we developed a highly porous laser-induced graphene/polyimide (LIG/PI) photothermal membrane with a three-dimensional (3D) architecture through electrospinning and laser ablation techniques. The 3D structure of the LIG/PI membrane increases the evaporation area and reduces the energy loss caused by diffuse reflectance of light. With the assistance of a thermal insulator and water pumping channels, the LIG/PI membrane achieves a high evaporation rate of ∼1.42 kg m–2 h–1, a high solar thermal conversion efficiency of ∼92.55%, and long-term evaporation stability in a high-concentration saline solution under 1 sun illumination. Such a stable photothermal membrane may provide important insights into designing rapid and efficient interfacial evaporation systems.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkNFOwjAUhhejiQR5BJO-wKDt1rJdEkAkwUgUr5ez7tSVbOvSDgxP4Ss7hQu98tyck_z5_pN8QXDP6JhRziagvD94VWKNzfuYKioiKq-CAWcyCWmciOtf920w8n5P-0nTiCdsEHxurbMHT1YO2hIbnGxtdTK1KZA8YZ07aJB8mK4kQHalQwwXpn_kjW2gIjOnStOh6g4OibaOvEBrCgJNQZZaG2Ww6cirrcCRBXqoTANdT5KjAbJuOnQalOl7lkdorfvJ7oIbDZXH0WUPg7eH5W7-GG6eV-v5bBMCT0UXsoRJJaexFCJGKTXPEy2BFoXQmCeFUqnUCHlacBGnvNAynkoNUZpzpgCmKhoG4tyrnPXeoc5aZ2pwp4zR7Fts9kdsdhHbc-zM9XG2twfXe_D_MF98V4VB</recordid><startdate>20200914</startdate><enddate>20200914</enddate><creator>Chen, Zhaochuan</creator><creator>Li, Qiang</creator><creator>Chen, Xuemei</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8240-2705</orcidid></search><sort><creationdate>20200914</creationdate><title>Porous Graphene/Polyimide Membrane with a Three-Dimensional Architecture for Rapid and Efficient Solar Desalination via Interfacial Evaporation</title><author>Chen, Zhaochuan ; Li, Qiang ; Chen, Xuemei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-1816c6746554e66f2b8f6a0dd5feb8dcc96feab9d25492df6476fa39b21caa7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhaochuan</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Chen, Xuemei</creatorcontrib><collection>CrossRef</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhaochuan</au><au>Li, Qiang</au><au>Chen, Xuemei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous Graphene/Polyimide Membrane with a Three-Dimensional Architecture for Rapid and Efficient Solar Desalination via Interfacial Evaporation</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2020-09-14</date><risdate>2020</risdate><volume>8</volume><issue>36</issue><spage>13850</spage><epage>13858</epage><pages>13850-13858</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>The solar desalination via interfacial evaporation has shown great potential in addressing the freshwater scarcity issue. However, the evaporation rate and solar thermal conversion efficiency of the current photothermal materials (flat membranes, papers, and thin films) have almost been pushed to the upper limit. In order to further improve the energy efficiency, in this work, we developed a highly porous laser-induced graphene/polyimide (LIG/PI) photothermal membrane with a three-dimensional (3D) architecture through electrospinning and laser ablation techniques. The 3D structure of the LIG/PI membrane increases the evaporation area and reduces the energy loss caused by diffuse reflectance of light. With the assistance of a thermal insulator and water pumping channels, the LIG/PI membrane achieves a high evaporation rate of ∼1.42 kg m–2 h–1, a high solar thermal conversion efficiency of ∼92.55%, and long-term evaporation stability in a high-concentration saline solution under 1 sun illumination. Such a stable photothermal membrane may provide important insights into designing rapid and efficient interfacial evaporation systems.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.0c05306</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8240-2705</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2020-09, Vol.8 (36), p.13850-13858
issn 2168-0485
2168-0485
language eng
recordid cdi_crossref_primary_10_1021_acssuschemeng_0c05306
source ACS Publications
title Porous Graphene/Polyimide Membrane with a Three-Dimensional Architecture for Rapid and Efficient Solar Desalination via Interfacial Evaporation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20Graphene/Polyimide%20Membrane%20with%20a%20Three-Dimensional%20Architecture%20for%20Rapid%20and%20Efficient%20Solar%20Desalination%20via%20Interfacial%20Evaporation&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Chen,%20Zhaochuan&rft.date=2020-09-14&rft.volume=8&rft.issue=36&rft.spage=13850&rft.epage=13858&rft.pages=13850-13858&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.0c05306&rft_dat=%3Cacs_cross%3Ec111233453%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true