Sustainable Encapsulation Strategy of Silicon Nanoparticles in Microcarbon Sphere for High-Performance Lithium-Ion Battery Anode

Owing to the high theoretical capacity, low operating potentials, and natural abundance, silicon (Si) is considered as one of the most promising anode materials for lithium-ion batteries. However, a large volume change during alloying–dealloying often results in pulverization, electrical contact los...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2020-09, Vol.8 (37), p.14150-14158
Hauptverfasser: Shin, Hyeon-Ji, Hwang, Jang-Yeon, Kwon, Hyun Jung, Kwak, Won-Jin, Kim, Sang-Ok, Kim, Hyung-Seok, Jung, Hun-Gi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Owing to the high theoretical capacity, low operating potentials, and natural abundance, silicon (Si) is considered as one of the most promising anode materials for lithium-ion batteries. However, a large volume change during alloying–dealloying often results in pulverization, electrical contact loss, and unstable solid-electrolyte interphase (SEI) formation, leading to rapid capacity fading. We present a rational encapsulation strategy of a silicon–carbon (Si–C) composite as a high-performance anode material for lithium-ion batteries (LIBs). The Si–C composite material is prepared via a one-pot hydrothermal method by using silicon nanoparticles modified using an etching route and sucrose as a carbon precursor. The proposed Si–C composite material has a meso-macroporous structure and contains a large weight fraction of silicon nanoparticles (40 wt %) encapsulated in a micrometric carbon sphere (∼3 μm). In the composite material, the carbon framework tightly encapsulates the silicon nanoparticles to the interior of the particle, which not only provides electrical conductivity but also decreases the stress/strain of the material during the alloying–dealloying process. The material demonstrates high initial capacity of 1300 mAh g–1, excellent capacity retention of 90% after 200 cycles, and fast charging–discharging capability within 12 min. We believe that the proposed encapsulation strategy here will be helpful in developing a high-energy and low-cost Si–C composite anode.
ISSN:2168-0485
2168-0485
DOI:10.1021/acssuschemeng.0c04828