Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare
The chemical signatures of volatile organic compounds (VOCs) in humans can be utilized for point-of-care (POC) diagnosis. Apart from toxic exposure studies, VOCs generated in humans can provide insights into one’s healthy and diseased metabolic states, acting as a biomarker for identifying numerous...
Gespeichert in:
Veröffentlicht in: | ACS sensors 2018-07, Vol.3 (7), p.1246-1263 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1263 |
---|---|
container_issue | 7 |
container_start_page | 1246 |
container_title | ACS sensors |
container_volume | 3 |
creator | Jalal, Ahmed H Alam, Fahmida Roychoudhury, Sohini Umasankar, Yogeswaran Pala, Nezih Bhansali, Shekhar |
description | The chemical signatures of volatile organic compounds (VOCs) in humans can be utilized for point-of-care (POC) diagnosis. Apart from toxic exposure studies, VOCs generated in humans can provide insights into one’s healthy and diseased metabolic states, acting as a biomarker for identifying numerous diseases noninvasively. VOC sensors and the technology of e-nose have received significant attention for continuous and selective monitoring of various physiological and pathophysiological conditions of an individual. Noninvasive detection of VOCs is achieved from biomatrices of breath, sweat and saliva. Among these, detection from sweat and saliva can be continuous in real-time. The sensing approaches include optical, chemiresistive and electrochemical techniques. This article provides an overview of such techniques. These, however, have limitations of reliability, precision, selectivity, and stability in continuous monitoring. Such limitations are due to lack of sensor stability and complexity of samples in a multivariate environment, which can lead to false readings. To overcome selectivity barriers, sensor arrays enabling multimodal sensing, have been used with pattern recognition techniques. Stability and precision issues have been addressed through advancements in nanotechnology. The use of various forms of nanomaterial not only enhance sensing performance, but also plays a major role in detection on a miniaturized scale. The rapid growth in medical Internet of Things (IoT) and artificial intelligence paves a pathway for improvements in human theranostics. |
doi_str_mv | 10.1021/acssensors.8b00400 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssensors_8b00400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b018516990</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-a41c29b14626f8bc01ae39a73b8d803d2f984a8505afeb0d8a8e84838e11dafb3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EolXpD7BA_oGWsZ2k4yWKgCJVKojHNpokTpsqL9nJgr_HVcpjxWZmFvfe0T2MXQtYCpDiljLnTONa65aYAgQAZ2wq1UovVKSD8z_3hM2dOwCACCMZIlyyidS40qj0lL0829Z1Jusdpybn8Z6qyjQ743hb8I-2or6sDN_aHTVlxuO27trB617H17xs-HqoyU9DVb_PyJordlFQ5cz8tGfs_eH-LV4vNtvHp_hus6AAsPdTZFKnIohkVGCagSCjNK1UijmCymWhMSAMIaTCpJAjocEAFRohcipSNWNyzM18A2dNkXS2rMl-JgKSI6LkF1FyQuRNN6OpG9La5D-WbyBesBwF3pwc2sE2vsN_iV-ZE3WO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare</title><source>MEDLINE</source><source>ACS Publications</source><creator>Jalal, Ahmed H ; Alam, Fahmida ; Roychoudhury, Sohini ; Umasankar, Yogeswaran ; Pala, Nezih ; Bhansali, Shekhar</creator><creatorcontrib>Jalal, Ahmed H ; Alam, Fahmida ; Roychoudhury, Sohini ; Umasankar, Yogeswaran ; Pala, Nezih ; Bhansali, Shekhar</creatorcontrib><description>The chemical signatures of volatile organic compounds (VOCs) in humans can be utilized for point-of-care (POC) diagnosis. Apart from toxic exposure studies, VOCs generated in humans can provide insights into one’s healthy and diseased metabolic states, acting as a biomarker for identifying numerous diseases noninvasively. VOC sensors and the technology of e-nose have received significant attention for continuous and selective monitoring of various physiological and pathophysiological conditions of an individual. Noninvasive detection of VOCs is achieved from biomatrices of breath, sweat and saliva. Among these, detection from sweat and saliva can be continuous in real-time. The sensing approaches include optical, chemiresistive and electrochemical techniques. This article provides an overview of such techniques. These, however, have limitations of reliability, precision, selectivity, and stability in continuous monitoring. Such limitations are due to lack of sensor stability and complexity of samples in a multivariate environment, which can lead to false readings. To overcome selectivity barriers, sensor arrays enabling multimodal sensing, have been used with pattern recognition techniques. Stability and precision issues have been addressed through advancements in nanotechnology. The use of various forms of nanomaterial not only enhance sensing performance, but also plays a major role in detection on a miniaturized scale. The rapid growth in medical Internet of Things (IoT) and artificial intelligence paves a pathway for improvements in human theranostics.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.8b00400</identifier><identifier>PMID: 29879839</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Biomarkers - analysis ; Biomarkers - blood ; Biomarkers - metabolism ; Biomarkers - urine ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Breath Tests - instrumentation ; Breath Tests - methods ; Chemistry Techniques, Analytical - instrumentation ; Chemistry Techniques, Analytical - methods ; Electronic Nose ; Equipment Design ; Extracellular Fluid - chemistry ; Extracellular Fluid - metabolism ; Humans ; Saliva - chemistry ; Saliva - metabolism ; Sweat - chemistry ; Sweat - metabolism ; Volatile Organic Compounds - analysis ; Volatile Organic Compounds - blood ; Volatile Organic Compounds - metabolism ; Volatile Organic Compounds - urine</subject><ispartof>ACS sensors, 2018-07, Vol.3 (7), p.1246-1263</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-a41c29b14626f8bc01ae39a73b8d803d2f984a8505afeb0d8a8e84838e11dafb3</citedby><cites>FETCH-LOGICAL-a408t-a41c29b14626f8bc01ae39a73b8d803d2f984a8505afeb0d8a8e84838e11dafb3</cites><orcidid>0000-0003-1857-1621 ; 0000-0001-9713-8548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssensors.8b00400$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssensors.8b00400$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29879839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jalal, Ahmed H</creatorcontrib><creatorcontrib>Alam, Fahmida</creatorcontrib><creatorcontrib>Roychoudhury, Sohini</creatorcontrib><creatorcontrib>Umasankar, Yogeswaran</creatorcontrib><creatorcontrib>Pala, Nezih</creatorcontrib><creatorcontrib>Bhansali, Shekhar</creatorcontrib><title>Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>The chemical signatures of volatile organic compounds (VOCs) in humans can be utilized for point-of-care (POC) diagnosis. Apart from toxic exposure studies, VOCs generated in humans can provide insights into one’s healthy and diseased metabolic states, acting as a biomarker for identifying numerous diseases noninvasively. VOC sensors and the technology of e-nose have received significant attention for continuous and selective monitoring of various physiological and pathophysiological conditions of an individual. Noninvasive detection of VOCs is achieved from biomatrices of breath, sweat and saliva. Among these, detection from sweat and saliva can be continuous in real-time. The sensing approaches include optical, chemiresistive and electrochemical techniques. This article provides an overview of such techniques. These, however, have limitations of reliability, precision, selectivity, and stability in continuous monitoring. Such limitations are due to lack of sensor stability and complexity of samples in a multivariate environment, which can lead to false readings. To overcome selectivity barriers, sensor arrays enabling multimodal sensing, have been used with pattern recognition techniques. Stability and precision issues have been addressed through advancements in nanotechnology. The use of various forms of nanomaterial not only enhance sensing performance, but also plays a major role in detection on a miniaturized scale. The rapid growth in medical Internet of Things (IoT) and artificial intelligence paves a pathway for improvements in human theranostics.</description><subject>Animals</subject><subject>Biomarkers - analysis</subject><subject>Biomarkers - blood</subject><subject>Biomarkers - metabolism</subject><subject>Biomarkers - urine</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Breath Tests - instrumentation</subject><subject>Breath Tests - methods</subject><subject>Chemistry Techniques, Analytical - instrumentation</subject><subject>Chemistry Techniques, Analytical - methods</subject><subject>Electronic Nose</subject><subject>Equipment Design</subject><subject>Extracellular Fluid - chemistry</subject><subject>Extracellular Fluid - metabolism</subject><subject>Humans</subject><subject>Saliva - chemistry</subject><subject>Saliva - metabolism</subject><subject>Sweat - chemistry</subject><subject>Sweat - metabolism</subject><subject>Volatile Organic Compounds - analysis</subject><subject>Volatile Organic Compounds - blood</subject><subject>Volatile Organic Compounds - metabolism</subject><subject>Volatile Organic Compounds - urine</subject><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EolXpD7BA_oGWsZ2k4yWKgCJVKojHNpokTpsqL9nJgr_HVcpjxWZmFvfe0T2MXQtYCpDiljLnTONa65aYAgQAZ2wq1UovVKSD8z_3hM2dOwCACCMZIlyyidS40qj0lL0829Z1Jusdpybn8Z6qyjQ743hb8I-2or6sDN_aHTVlxuO27trB617H17xs-HqoyU9DVb_PyJordlFQ5cz8tGfs_eH-LV4vNtvHp_hus6AAsPdTZFKnIohkVGCagSCjNK1UijmCymWhMSAMIaTCpJAjocEAFRohcipSNWNyzM18A2dNkXS2rMl-JgKSI6LkF1FyQuRNN6OpG9La5D-WbyBesBwF3pwc2sE2vsN_iV-ZE3WO</recordid><startdate>20180727</startdate><enddate>20180727</enddate><creator>Jalal, Ahmed H</creator><creator>Alam, Fahmida</creator><creator>Roychoudhury, Sohini</creator><creator>Umasankar, Yogeswaran</creator><creator>Pala, Nezih</creator><creator>Bhansali, Shekhar</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1857-1621</orcidid><orcidid>https://orcid.org/0000-0001-9713-8548</orcidid></search><sort><creationdate>20180727</creationdate><title>Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare</title><author>Jalal, Ahmed H ; Alam, Fahmida ; Roychoudhury, Sohini ; Umasankar, Yogeswaran ; Pala, Nezih ; Bhansali, Shekhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-a41c29b14626f8bc01ae39a73b8d803d2f984a8505afeb0d8a8e84838e11dafb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biomarkers - analysis</topic><topic>Biomarkers - blood</topic><topic>Biomarkers - metabolism</topic><topic>Biomarkers - urine</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Breath Tests - instrumentation</topic><topic>Breath Tests - methods</topic><topic>Chemistry Techniques, Analytical - instrumentation</topic><topic>Chemistry Techniques, Analytical - methods</topic><topic>Electronic Nose</topic><topic>Equipment Design</topic><topic>Extracellular Fluid - chemistry</topic><topic>Extracellular Fluid - metabolism</topic><topic>Humans</topic><topic>Saliva - chemistry</topic><topic>Saliva - metabolism</topic><topic>Sweat - chemistry</topic><topic>Sweat - metabolism</topic><topic>Volatile Organic Compounds - analysis</topic><topic>Volatile Organic Compounds - blood</topic><topic>Volatile Organic Compounds - metabolism</topic><topic>Volatile Organic Compounds - urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jalal, Ahmed H</creatorcontrib><creatorcontrib>Alam, Fahmida</creatorcontrib><creatorcontrib>Roychoudhury, Sohini</creatorcontrib><creatorcontrib>Umasankar, Yogeswaran</creatorcontrib><creatorcontrib>Pala, Nezih</creatorcontrib><creatorcontrib>Bhansali, Shekhar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jalal, Ahmed H</au><au>Alam, Fahmida</au><au>Roychoudhury, Sohini</au><au>Umasankar, Yogeswaran</au><au>Pala, Nezih</au><au>Bhansali, Shekhar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2018-07-27</date><risdate>2018</risdate><volume>3</volume><issue>7</issue><spage>1246</spage><epage>1263</epage><pages>1246-1263</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>The chemical signatures of volatile organic compounds (VOCs) in humans can be utilized for point-of-care (POC) diagnosis. Apart from toxic exposure studies, VOCs generated in humans can provide insights into one’s healthy and diseased metabolic states, acting as a biomarker for identifying numerous diseases noninvasively. VOC sensors and the technology of e-nose have received significant attention for continuous and selective monitoring of various physiological and pathophysiological conditions of an individual. Noninvasive detection of VOCs is achieved from biomatrices of breath, sweat and saliva. Among these, detection from sweat and saliva can be continuous in real-time. The sensing approaches include optical, chemiresistive and electrochemical techniques. This article provides an overview of such techniques. These, however, have limitations of reliability, precision, selectivity, and stability in continuous monitoring. Such limitations are due to lack of sensor stability and complexity of samples in a multivariate environment, which can lead to false readings. To overcome selectivity barriers, sensor arrays enabling multimodal sensing, have been used with pattern recognition techniques. Stability and precision issues have been addressed through advancements in nanotechnology. The use of various forms of nanomaterial not only enhance sensing performance, but also plays a major role in detection on a miniaturized scale. The rapid growth in medical Internet of Things (IoT) and artificial intelligence paves a pathway for improvements in human theranostics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29879839</pmid><doi>10.1021/acssensors.8b00400</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1857-1621</orcidid><orcidid>https://orcid.org/0000-0001-9713-8548</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-3694 |
ispartof | ACS sensors, 2018-07, Vol.3 (7), p.1246-1263 |
issn | 2379-3694 2379-3694 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acssensors_8b00400 |
source | MEDLINE; ACS Publications |
subjects | Animals Biomarkers - analysis Biomarkers - blood Biomarkers - metabolism Biomarkers - urine Biosensing Techniques - instrumentation Biosensing Techniques - methods Breath Tests - instrumentation Breath Tests - methods Chemistry Techniques, Analytical - instrumentation Chemistry Techniques, Analytical - methods Electronic Nose Equipment Design Extracellular Fluid - chemistry Extracellular Fluid - metabolism Humans Saliva - chemistry Saliva - metabolism Sweat - chemistry Sweat - metabolism Volatile Organic Compounds - analysis Volatile Organic Compounds - blood Volatile Organic Compounds - metabolism Volatile Organic Compounds - urine |
title | Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prospects%20and%20Challenges%20of%20Volatile%20Organic%20Compound%20Sensors%20in%20Human%20Healthcare&rft.jtitle=ACS%20sensors&rft.au=Jalal,%20Ahmed%20H&rft.date=2018-07-27&rft.volume=3&rft.issue=7&rft.spage=1246&rft.epage=1263&rft.pages=1246-1263&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.8b00400&rft_dat=%3Cacs_cross%3Eb018516990%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29879839&rfr_iscdi=true |