Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare

The chemical signatures of volatile organic compounds (VOCs) in humans can be utilized for point-of-care (POC) diagnosis. Apart from toxic exposure studies, VOCs generated in humans can provide insights into one’s healthy and diseased metabolic states, acting as a biomarker for identifying numerous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sensors 2018-07, Vol.3 (7), p.1246-1263
Hauptverfasser: Jalal, Ahmed H, Alam, Fahmida, Roychoudhury, Sohini, Umasankar, Yogeswaran, Pala, Nezih, Bhansali, Shekhar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1263
container_issue 7
container_start_page 1246
container_title ACS sensors
container_volume 3
creator Jalal, Ahmed H
Alam, Fahmida
Roychoudhury, Sohini
Umasankar, Yogeswaran
Pala, Nezih
Bhansali, Shekhar
description The chemical signatures of volatile organic compounds (VOCs) in humans can be utilized for point-of-care (POC) diagnosis. Apart from toxic exposure studies, VOCs generated in humans can provide insights into one’s healthy and diseased metabolic states, acting as a biomarker for identifying numerous diseases noninvasively. VOC sensors and the technology of e-nose have received significant attention for continuous and selective monitoring of various physiological and pathophysiological conditions of an individual. Noninvasive detection of VOCs is achieved from biomatrices of breath, sweat and saliva. Among these, detection from sweat and saliva can be continuous in real-time. The sensing approaches include optical, chemiresistive and electrochemical techniques. This article provides an overview of such techniques. These, however, have limitations of reliability, precision, selectivity, and stability in continuous monitoring. Such limitations are due to lack of sensor stability and complexity of samples in a multivariate environment, which can lead to false readings. To overcome selectivity barriers, sensor arrays enabling multimodal sensing, have been used with pattern recognition techniques. Stability and precision issues have been addressed through advancements in nanotechnology. The use of various forms of nanomaterial not only enhance sensing performance, but also plays a major role in detection on a miniaturized scale. The rapid growth in medical Internet of Things (IoT) and artificial intelligence paves a pathway for improvements in human theranostics.
doi_str_mv 10.1021/acssensors.8b00400
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssensors_8b00400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b018516990</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-a41c29b14626f8bc01ae39a73b8d803d2f984a8505afeb0d8a8e84838e11dafb3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EolXpD7BA_oGWsZ2k4yWKgCJVKojHNpokTpsqL9nJgr_HVcpjxWZmFvfe0T2MXQtYCpDiljLnTONa65aYAgQAZ2wq1UovVKSD8z_3hM2dOwCACCMZIlyyidS40qj0lL0829Z1Jusdpybn8Z6qyjQ743hb8I-2or6sDN_aHTVlxuO27trB617H17xs-HqoyU9DVb_PyJordlFQ5cz8tGfs_eH-LV4vNtvHp_hus6AAsPdTZFKnIohkVGCagSCjNK1UijmCymWhMSAMIaTCpJAjocEAFRohcipSNWNyzM18A2dNkXS2rMl-JgKSI6LkF1FyQuRNN6OpG9La5D-WbyBesBwF3pwc2sE2vsN_iV-ZE3WO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare</title><source>MEDLINE</source><source>ACS Publications</source><creator>Jalal, Ahmed H ; Alam, Fahmida ; Roychoudhury, Sohini ; Umasankar, Yogeswaran ; Pala, Nezih ; Bhansali, Shekhar</creator><creatorcontrib>Jalal, Ahmed H ; Alam, Fahmida ; Roychoudhury, Sohini ; Umasankar, Yogeswaran ; Pala, Nezih ; Bhansali, Shekhar</creatorcontrib><description>The chemical signatures of volatile organic compounds (VOCs) in humans can be utilized for point-of-care (POC) diagnosis. Apart from toxic exposure studies, VOCs generated in humans can provide insights into one’s healthy and diseased metabolic states, acting as a biomarker for identifying numerous diseases noninvasively. VOC sensors and the technology of e-nose have received significant attention for continuous and selective monitoring of various physiological and pathophysiological conditions of an individual. Noninvasive detection of VOCs is achieved from biomatrices of breath, sweat and saliva. Among these, detection from sweat and saliva can be continuous in real-time. The sensing approaches include optical, chemiresistive and electrochemical techniques. This article provides an overview of such techniques. These, however, have limitations of reliability, precision, selectivity, and stability in continuous monitoring. Such limitations are due to lack of sensor stability and complexity of samples in a multivariate environment, which can lead to false readings. To overcome selectivity barriers, sensor arrays enabling multimodal sensing, have been used with pattern recognition techniques. Stability and precision issues have been addressed through advancements in nanotechnology. The use of various forms of nanomaterial not only enhance sensing performance, but also plays a major role in detection on a miniaturized scale. The rapid growth in medical Internet of Things (IoT) and artificial intelligence paves a pathway for improvements in human theranostics.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.8b00400</identifier><identifier>PMID: 29879839</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Biomarkers - analysis ; Biomarkers - blood ; Biomarkers - metabolism ; Biomarkers - urine ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Breath Tests - instrumentation ; Breath Tests - methods ; Chemistry Techniques, Analytical - instrumentation ; Chemistry Techniques, Analytical - methods ; Electronic Nose ; Equipment Design ; Extracellular Fluid - chemistry ; Extracellular Fluid - metabolism ; Humans ; Saliva - chemistry ; Saliva - metabolism ; Sweat - chemistry ; Sweat - metabolism ; Volatile Organic Compounds - analysis ; Volatile Organic Compounds - blood ; Volatile Organic Compounds - metabolism ; Volatile Organic Compounds - urine</subject><ispartof>ACS sensors, 2018-07, Vol.3 (7), p.1246-1263</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-a41c29b14626f8bc01ae39a73b8d803d2f984a8505afeb0d8a8e84838e11dafb3</citedby><cites>FETCH-LOGICAL-a408t-a41c29b14626f8bc01ae39a73b8d803d2f984a8505afeb0d8a8e84838e11dafb3</cites><orcidid>0000-0003-1857-1621 ; 0000-0001-9713-8548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssensors.8b00400$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssensors.8b00400$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29879839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jalal, Ahmed H</creatorcontrib><creatorcontrib>Alam, Fahmida</creatorcontrib><creatorcontrib>Roychoudhury, Sohini</creatorcontrib><creatorcontrib>Umasankar, Yogeswaran</creatorcontrib><creatorcontrib>Pala, Nezih</creatorcontrib><creatorcontrib>Bhansali, Shekhar</creatorcontrib><title>Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>The chemical signatures of volatile organic compounds (VOCs) in humans can be utilized for point-of-care (POC) diagnosis. Apart from toxic exposure studies, VOCs generated in humans can provide insights into one’s healthy and diseased metabolic states, acting as a biomarker for identifying numerous diseases noninvasively. VOC sensors and the technology of e-nose have received significant attention for continuous and selective monitoring of various physiological and pathophysiological conditions of an individual. Noninvasive detection of VOCs is achieved from biomatrices of breath, sweat and saliva. Among these, detection from sweat and saliva can be continuous in real-time. The sensing approaches include optical, chemiresistive and electrochemical techniques. This article provides an overview of such techniques. These, however, have limitations of reliability, precision, selectivity, and stability in continuous monitoring. Such limitations are due to lack of sensor stability and complexity of samples in a multivariate environment, which can lead to false readings. To overcome selectivity barriers, sensor arrays enabling multimodal sensing, have been used with pattern recognition techniques. Stability and precision issues have been addressed through advancements in nanotechnology. The use of various forms of nanomaterial not only enhance sensing performance, but also plays a major role in detection on a miniaturized scale. The rapid growth in medical Internet of Things (IoT) and artificial intelligence paves a pathway for improvements in human theranostics.</description><subject>Animals</subject><subject>Biomarkers - analysis</subject><subject>Biomarkers - blood</subject><subject>Biomarkers - metabolism</subject><subject>Biomarkers - urine</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Breath Tests - instrumentation</subject><subject>Breath Tests - methods</subject><subject>Chemistry Techniques, Analytical - instrumentation</subject><subject>Chemistry Techniques, Analytical - methods</subject><subject>Electronic Nose</subject><subject>Equipment Design</subject><subject>Extracellular Fluid - chemistry</subject><subject>Extracellular Fluid - metabolism</subject><subject>Humans</subject><subject>Saliva - chemistry</subject><subject>Saliva - metabolism</subject><subject>Sweat - chemistry</subject><subject>Sweat - metabolism</subject><subject>Volatile Organic Compounds - analysis</subject><subject>Volatile Organic Compounds - blood</subject><subject>Volatile Organic Compounds - metabolism</subject><subject>Volatile Organic Compounds - urine</subject><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EolXpD7BA_oGWsZ2k4yWKgCJVKojHNpokTpsqL9nJgr_HVcpjxWZmFvfe0T2MXQtYCpDiljLnTONa65aYAgQAZ2wq1UovVKSD8z_3hM2dOwCACCMZIlyyidS40qj0lL0829Z1Jusdpybn8Z6qyjQ743hb8I-2or6sDN_aHTVlxuO27trB617H17xs-HqoyU9DVb_PyJordlFQ5cz8tGfs_eH-LV4vNtvHp_hus6AAsPdTZFKnIohkVGCagSCjNK1UijmCymWhMSAMIaTCpJAjocEAFRohcipSNWNyzM18A2dNkXS2rMl-JgKSI6LkF1FyQuRNN6OpG9La5D-WbyBesBwF3pwc2sE2vsN_iV-ZE3WO</recordid><startdate>20180727</startdate><enddate>20180727</enddate><creator>Jalal, Ahmed H</creator><creator>Alam, Fahmida</creator><creator>Roychoudhury, Sohini</creator><creator>Umasankar, Yogeswaran</creator><creator>Pala, Nezih</creator><creator>Bhansali, Shekhar</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1857-1621</orcidid><orcidid>https://orcid.org/0000-0001-9713-8548</orcidid></search><sort><creationdate>20180727</creationdate><title>Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare</title><author>Jalal, Ahmed H ; Alam, Fahmida ; Roychoudhury, Sohini ; Umasankar, Yogeswaran ; Pala, Nezih ; Bhansali, Shekhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-a41c29b14626f8bc01ae39a73b8d803d2f984a8505afeb0d8a8e84838e11dafb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biomarkers - analysis</topic><topic>Biomarkers - blood</topic><topic>Biomarkers - metabolism</topic><topic>Biomarkers - urine</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Breath Tests - instrumentation</topic><topic>Breath Tests - methods</topic><topic>Chemistry Techniques, Analytical - instrumentation</topic><topic>Chemistry Techniques, Analytical - methods</topic><topic>Electronic Nose</topic><topic>Equipment Design</topic><topic>Extracellular Fluid - chemistry</topic><topic>Extracellular Fluid - metabolism</topic><topic>Humans</topic><topic>Saliva - chemistry</topic><topic>Saliva - metabolism</topic><topic>Sweat - chemistry</topic><topic>Sweat - metabolism</topic><topic>Volatile Organic Compounds - analysis</topic><topic>Volatile Organic Compounds - blood</topic><topic>Volatile Organic Compounds - metabolism</topic><topic>Volatile Organic Compounds - urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jalal, Ahmed H</creatorcontrib><creatorcontrib>Alam, Fahmida</creatorcontrib><creatorcontrib>Roychoudhury, Sohini</creatorcontrib><creatorcontrib>Umasankar, Yogeswaran</creatorcontrib><creatorcontrib>Pala, Nezih</creatorcontrib><creatorcontrib>Bhansali, Shekhar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jalal, Ahmed H</au><au>Alam, Fahmida</au><au>Roychoudhury, Sohini</au><au>Umasankar, Yogeswaran</au><au>Pala, Nezih</au><au>Bhansali, Shekhar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2018-07-27</date><risdate>2018</risdate><volume>3</volume><issue>7</issue><spage>1246</spage><epage>1263</epage><pages>1246-1263</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>The chemical signatures of volatile organic compounds (VOCs) in humans can be utilized for point-of-care (POC) diagnosis. Apart from toxic exposure studies, VOCs generated in humans can provide insights into one’s healthy and diseased metabolic states, acting as a biomarker for identifying numerous diseases noninvasively. VOC sensors and the technology of e-nose have received significant attention for continuous and selective monitoring of various physiological and pathophysiological conditions of an individual. Noninvasive detection of VOCs is achieved from biomatrices of breath, sweat and saliva. Among these, detection from sweat and saliva can be continuous in real-time. The sensing approaches include optical, chemiresistive and electrochemical techniques. This article provides an overview of such techniques. These, however, have limitations of reliability, precision, selectivity, and stability in continuous monitoring. Such limitations are due to lack of sensor stability and complexity of samples in a multivariate environment, which can lead to false readings. To overcome selectivity barriers, sensor arrays enabling multimodal sensing, have been used with pattern recognition techniques. Stability and precision issues have been addressed through advancements in nanotechnology. The use of various forms of nanomaterial not only enhance sensing performance, but also plays a major role in detection on a miniaturized scale. The rapid growth in medical Internet of Things (IoT) and artificial intelligence paves a pathway for improvements in human theranostics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29879839</pmid><doi>10.1021/acssensors.8b00400</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1857-1621</orcidid><orcidid>https://orcid.org/0000-0001-9713-8548</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2379-3694
ispartof ACS sensors, 2018-07, Vol.3 (7), p.1246-1263
issn 2379-3694
2379-3694
language eng
recordid cdi_crossref_primary_10_1021_acssensors_8b00400
source MEDLINE; ACS Publications
subjects Animals
Biomarkers - analysis
Biomarkers - blood
Biomarkers - metabolism
Biomarkers - urine
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Breath Tests - instrumentation
Breath Tests - methods
Chemistry Techniques, Analytical - instrumentation
Chemistry Techniques, Analytical - methods
Electronic Nose
Equipment Design
Extracellular Fluid - chemistry
Extracellular Fluid - metabolism
Humans
Saliva - chemistry
Saliva - metabolism
Sweat - chemistry
Sweat - metabolism
Volatile Organic Compounds - analysis
Volatile Organic Compounds - blood
Volatile Organic Compounds - metabolism
Volatile Organic Compounds - urine
title Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prospects%20and%20Challenges%20of%20Volatile%20Organic%20Compound%20Sensors%20in%20Human%20Healthcare&rft.jtitle=ACS%20sensors&rft.au=Jalal,%20Ahmed%20H&rft.date=2018-07-27&rft.volume=3&rft.issue=7&rft.spage=1246&rft.epage=1263&rft.pages=1246-1263&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.8b00400&rft_dat=%3Cacs_cross%3Eb018516990%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29879839&rfr_iscdi=true