Hydrolytic Enzymes as (Bio)-Logic for Wireless and Chipless Biosensors
The switchable activity of allosteric, hydrolytic enzymes was used as a single-input, “buffer” logic gate (performing YES and NOT) in a screen-printable biosensor. The enzyme substrate functioned as an “AND” logic gate with the enzyme and cofactor as inputs. These (bio)-logic materials transduced a...
Gespeichert in:
Veröffentlicht in: | ACS sensors 2016-04, Vol.1 (4), p.348-353 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 353 |
---|---|
container_issue | 4 |
container_start_page | 348 |
container_title | ACS sensors |
container_volume | 1 |
creator | Reuel, Nigel F McAuliffe, Joseph C Becht, Gregory A Mehdizadeh, Mehrdad Munos, Jeffrey W Wang, RuPing Delaney, William J |
description | The switchable activity of allosteric, hydrolytic enzymes was used as a single-input, “buffer” logic gate (performing YES and NOT) in a screen-printable biosensor. The enzyme substrate functioned as an “AND” logic gate with the enzyme and cofactor as inputs. These (bio)-logic materials transduced a signal by the cofactor activating the enzyme which then degraded the substrate that formed the dielectric of a tuning capacitor in an inductor-capacitor (LC) circuit. The degradation of the substrate was engineered to shift the capacitance and thus the resonant frequency of the device. The resonant frequency was monitored wirelessly with a low-power vector network analyzer observing the S21 parameter. Proof of concept was shown with subtilisin as the enzyme, activated by calcium (100 μg/mL and 5 mM, respectively) degrading a collagen substrate with a demonstrated wireless read range of up to 4 cm. Selectivity over other divalent cations (magnesium, copper II, and manganese II) and the effect of receiver motion were also shown on the wireless measurement. |
doi_str_mv | 10.1021/acssensors.5b00259 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssensors_5b00259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h09141192</sourcerecordid><originalsourceid>FETCH-LOGICAL-a286t-626a55290d34bb0ececaea01126645699929834a00b7a883e1e8ccb2d076c9363</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElXpH2DKCEPK2Y6deISoH0iRWECMluM4kCqNK18Zwq_H0EgwMd3He-_d6SHkmsKSAqN3xiK6AX3ApagBmFBnZMZ4rlIuVXb-J78kC8QdAFAhmShgRtbbsQm-H4-dTVbD57h3mBhMbh46f5tW_i22Wx-S1y643mHUhiYp37vDTxGHpsNX5KI1PbrFFOfkZb16Lrdp9bR5LO-r1LBCHlPJpBGCKWh4VtfgrLPGGaCUSZkJqZRiquCZAahzUxTcUVdYW7MGcmkVl3xO2GmvDR4xuFYfQrc3YdQU9DcM_QtDTzCiaXkyRU3v_EcY4ov_Gb4AmStkow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydrolytic Enzymes as (Bio)-Logic for Wireless and Chipless Biosensors</title><source>ACS Publications</source><creator>Reuel, Nigel F ; McAuliffe, Joseph C ; Becht, Gregory A ; Mehdizadeh, Mehrdad ; Munos, Jeffrey W ; Wang, RuPing ; Delaney, William J</creator><creatorcontrib>Reuel, Nigel F ; McAuliffe, Joseph C ; Becht, Gregory A ; Mehdizadeh, Mehrdad ; Munos, Jeffrey W ; Wang, RuPing ; Delaney, William J</creatorcontrib><description>The switchable activity of allosteric, hydrolytic enzymes was used as a single-input, “buffer” logic gate (performing YES and NOT) in a screen-printable biosensor. The enzyme substrate functioned as an “AND” logic gate with the enzyme and cofactor as inputs. These (bio)-logic materials transduced a signal by the cofactor activating the enzyme which then degraded the substrate that formed the dielectric of a tuning capacitor in an inductor-capacitor (LC) circuit. The degradation of the substrate was engineered to shift the capacitance and thus the resonant frequency of the device. The resonant frequency was monitored wirelessly with a low-power vector network analyzer observing the S21 parameter. Proof of concept was shown with subtilisin as the enzyme, activated by calcium (100 μg/mL and 5 mM, respectively) degrading a collagen substrate with a demonstrated wireless read range of up to 4 cm. Selectivity over other divalent cations (magnesium, copper II, and manganese II) and the effect of receiver motion were also shown on the wireless measurement.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.5b00259</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sensors, 2016-04, Vol.1 (4), p.348-353</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a286t-626a55290d34bb0ececaea01126645699929834a00b7a883e1e8ccb2d076c9363</citedby><cites>FETCH-LOGICAL-a286t-626a55290d34bb0ececaea01126645699929834a00b7a883e1e8ccb2d076c9363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssensors.5b00259$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssensors.5b00259$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Reuel, Nigel F</creatorcontrib><creatorcontrib>McAuliffe, Joseph C</creatorcontrib><creatorcontrib>Becht, Gregory A</creatorcontrib><creatorcontrib>Mehdizadeh, Mehrdad</creatorcontrib><creatorcontrib>Munos, Jeffrey W</creatorcontrib><creatorcontrib>Wang, RuPing</creatorcontrib><creatorcontrib>Delaney, William J</creatorcontrib><title>Hydrolytic Enzymes as (Bio)-Logic for Wireless and Chipless Biosensors</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>The switchable activity of allosteric, hydrolytic enzymes was used as a single-input, “buffer” logic gate (performing YES and NOT) in a screen-printable biosensor. The enzyme substrate functioned as an “AND” logic gate with the enzyme and cofactor as inputs. These (bio)-logic materials transduced a signal by the cofactor activating the enzyme which then degraded the substrate that formed the dielectric of a tuning capacitor in an inductor-capacitor (LC) circuit. The degradation of the substrate was engineered to shift the capacitance and thus the resonant frequency of the device. The resonant frequency was monitored wirelessly with a low-power vector network analyzer observing the S21 parameter. Proof of concept was shown with subtilisin as the enzyme, activated by calcium (100 μg/mL and 5 mM, respectively) degrading a collagen substrate with a demonstrated wireless read range of up to 4 cm. Selectivity over other divalent cations (magnesium, copper II, and manganese II) and the effect of receiver motion were also shown on the wireless measurement.</description><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EElXpH2DKCEPK2Y6deISoH0iRWECMluM4kCqNK18Zwq_H0EgwMd3He-_d6SHkmsKSAqN3xiK6AX3ApagBmFBnZMZ4rlIuVXb-J78kC8QdAFAhmShgRtbbsQm-H4-dTVbD57h3mBhMbh46f5tW_i22Wx-S1y643mHUhiYp37vDTxGHpsNX5KI1PbrFFOfkZb16Lrdp9bR5LO-r1LBCHlPJpBGCKWh4VtfgrLPGGaCUSZkJqZRiquCZAahzUxTcUVdYW7MGcmkVl3xO2GmvDR4xuFYfQrc3YdQU9DcM_QtDTzCiaXkyRU3v_EcY4ov_Gb4AmStkow</recordid><startdate>20160422</startdate><enddate>20160422</enddate><creator>Reuel, Nigel F</creator><creator>McAuliffe, Joseph C</creator><creator>Becht, Gregory A</creator><creator>Mehdizadeh, Mehrdad</creator><creator>Munos, Jeffrey W</creator><creator>Wang, RuPing</creator><creator>Delaney, William J</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160422</creationdate><title>Hydrolytic Enzymes as (Bio)-Logic for Wireless and Chipless Biosensors</title><author>Reuel, Nigel F ; McAuliffe, Joseph C ; Becht, Gregory A ; Mehdizadeh, Mehrdad ; Munos, Jeffrey W ; Wang, RuPing ; Delaney, William J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a286t-626a55290d34bb0ececaea01126645699929834a00b7a883e1e8ccb2d076c9363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reuel, Nigel F</creatorcontrib><creatorcontrib>McAuliffe, Joseph C</creatorcontrib><creatorcontrib>Becht, Gregory A</creatorcontrib><creatorcontrib>Mehdizadeh, Mehrdad</creatorcontrib><creatorcontrib>Munos, Jeffrey W</creatorcontrib><creatorcontrib>Wang, RuPing</creatorcontrib><creatorcontrib>Delaney, William J</creatorcontrib><collection>CrossRef</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reuel, Nigel F</au><au>McAuliffe, Joseph C</au><au>Becht, Gregory A</au><au>Mehdizadeh, Mehrdad</au><au>Munos, Jeffrey W</au><au>Wang, RuPing</au><au>Delaney, William J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrolytic Enzymes as (Bio)-Logic for Wireless and Chipless Biosensors</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2016-04-22</date><risdate>2016</risdate><volume>1</volume><issue>4</issue><spage>348</spage><epage>353</epage><pages>348-353</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>The switchable activity of allosteric, hydrolytic enzymes was used as a single-input, “buffer” logic gate (performing YES and NOT) in a screen-printable biosensor. The enzyme substrate functioned as an “AND” logic gate with the enzyme and cofactor as inputs. These (bio)-logic materials transduced a signal by the cofactor activating the enzyme which then degraded the substrate that formed the dielectric of a tuning capacitor in an inductor-capacitor (LC) circuit. The degradation of the substrate was engineered to shift the capacitance and thus the resonant frequency of the device. The resonant frequency was monitored wirelessly with a low-power vector network analyzer observing the S21 parameter. Proof of concept was shown with subtilisin as the enzyme, activated by calcium (100 μg/mL and 5 mM, respectively) degrading a collagen substrate with a demonstrated wireless read range of up to 4 cm. Selectivity over other divalent cations (magnesium, copper II, and manganese II) and the effect of receiver motion were also shown on the wireless measurement.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssensors.5b00259</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-3694 |
ispartof | ACS sensors, 2016-04, Vol.1 (4), p.348-353 |
issn | 2379-3694 2379-3694 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acssensors_5b00259 |
source | ACS Publications |
title | Hydrolytic Enzymes as (Bio)-Logic for Wireless and Chipless Biosensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrolytic%20Enzymes%20as%20(Bio)-Logic%20for%20Wireless%20and%20Chipless%20Biosensors&rft.jtitle=ACS%20sensors&rft.au=Reuel,%20Nigel%20F&rft.date=2016-04-22&rft.volume=1&rft.issue=4&rft.spage=348&rft.epage=353&rft.pages=348-353&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.5b00259&rft_dat=%3Cacs_cross%3Eh09141192%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |