Visualization and Quantification of Electrochemical H 2 Bubble Nucleation at Pt, Au, and MoS 2 Substrates

Electrolytic gas evolution is a significant phenomenon in many electrochemical technologies from water splitting, chloralkali process to fuel cells. Although it is known that gas evolution may substantially affect the ohmic resistance and mass transfer, studies focusing on the electrochemistry of in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sensors 2021-02, Vol.6 (2), p.355-363
Hauptverfasser: Liu, Yulong, Jin, Cheng, Liu, Yuwen, Ruiz, Karla Hernandez, Ren, Hang, Fan, Yuchi, White, Henry S, Chen, Qianjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363
container_issue 2
container_start_page 355
container_title ACS sensors
container_volume 6
creator Liu, Yulong
Jin, Cheng
Liu, Yuwen
Ruiz, Karla Hernandez
Ren, Hang
Fan, Yuchi
White, Henry S
Chen, Qianjin
description Electrolytic gas evolution is a significant phenomenon in many electrochemical technologies from water splitting, chloralkali process to fuel cells. Although it is known that gas evolution may substantially affect the ohmic resistance and mass transfer, studies focusing on the electrochemistry of individual bubbles are critical but also challenging. Here, we report an approach using scanning electrochemical cell microscopy (SECCM) with a single channel pipet to quantitatively study individual gas bubble nucleation on different electrode substrates, including conventional polycrystalline Pt and Au films, as well as the most interesting two-dimensional semiconductor MoS . Due to the confinement effect of the pipet, well-defined peak-shaped voltammetric features associated with single bubble nucleation and growth are consistently observed. From stochastic bubble nucleation measurement and finite element simulation, the surface H concentration corresponding to bubble nucleation is estimated to be ∼218, 137, and 157 mM, with critical nuclei contact angles of ∼156°, ∼161°, and ∼160° at polycrystalline Pt, Au, and MoS substrates, respectively. We further demonstrated the surface faceting at polycrystalline Pt is not specifically correlated with the bubble nucleation behavior.
doi_str_mv 10.1021/acssensors.0c00913
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssensors_0c00913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32449344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1154-e5b2ad4ae44ad921038cac5367bebfe38aa662ae4ad8831f9805bb1d19857c8c3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EolXpD7BA_oCm-Jnay1IBRSovFdhGY8cRRmlSxfYCvp5Ay2M1oztz7uIgdErJlBJGz8GG4JrQdmFKLCGa8gM0ZHymM55rcfhvH6BxCG-EECpzJhU5RgPOhNBciCHyLz4kqP0HRN82GJoSPyZooq-83UVthS9rZ2PX2le36dMaLzHDF8mY2uG7ZGu3ZyN-iBM8T5Pvmtt23b-tkwmxg-jCCTqqoA5uvJ8j9Hx1-bRYZqv765vFfJVZSqXInDQMSgFOCCg1o4QrC1byfGacqRxXAHnO-jOUSnFaaUWkMbSkWsmZVZaPENv12q4NoXNVse38Brr3gpLiS13xp67Yq-uhsx20TWbjyl_kRxT_BN1pbWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Visualization and Quantification of Electrochemical H 2 Bubble Nucleation at Pt, Au, and MoS 2 Substrates</title><source>MEDLINE</source><source>ACS Publications</source><creator>Liu, Yulong ; Jin, Cheng ; Liu, Yuwen ; Ruiz, Karla Hernandez ; Ren, Hang ; Fan, Yuchi ; White, Henry S ; Chen, Qianjin</creator><creatorcontrib>Liu, Yulong ; Jin, Cheng ; Liu, Yuwen ; Ruiz, Karla Hernandez ; Ren, Hang ; Fan, Yuchi ; White, Henry S ; Chen, Qianjin</creatorcontrib><description>Electrolytic gas evolution is a significant phenomenon in many electrochemical technologies from water splitting, chloralkali process to fuel cells. Although it is known that gas evolution may substantially affect the ohmic resistance and mass transfer, studies focusing on the electrochemistry of individual bubbles are critical but also challenging. Here, we report an approach using scanning electrochemical cell microscopy (SECCM) with a single channel pipet to quantitatively study individual gas bubble nucleation on different electrode substrates, including conventional polycrystalline Pt and Au films, as well as the most interesting two-dimensional semiconductor MoS . Due to the confinement effect of the pipet, well-defined peak-shaped voltammetric features associated with single bubble nucleation and growth are consistently observed. From stochastic bubble nucleation measurement and finite element simulation, the surface H concentration corresponding to bubble nucleation is estimated to be ∼218, 137, and 157 mM, with critical nuclei contact angles of ∼156°, ∼161°, and ∼160° at polycrystalline Pt, Au, and MoS substrates, respectively. We further demonstrated the surface faceting at polycrystalline Pt is not specifically correlated with the bubble nucleation behavior.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.0c00913</identifier><identifier>PMID: 32449344</identifier><language>eng</language><publisher>United States</publisher><subject>Electrolytes ; Molybdenum ; Water</subject><ispartof>ACS sensors, 2021-02, Vol.6 (2), p.355-363</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1154-e5b2ad4ae44ad921038cac5367bebfe38aa662ae4ad8831f9805bb1d19857c8c3</citedby><cites>FETCH-LOGICAL-c1154-e5b2ad4ae44ad921038cac5367bebfe38aa662ae4ad8831f9805bb1d19857c8c3</cites><orcidid>0000-0001-7713-6748 ; 0000-0002-9480-8881 ; 0000-0002-5053-0996 ; 0000-0001-9150-6178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2751,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32449344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yulong</creatorcontrib><creatorcontrib>Jin, Cheng</creatorcontrib><creatorcontrib>Liu, Yuwen</creatorcontrib><creatorcontrib>Ruiz, Karla Hernandez</creatorcontrib><creatorcontrib>Ren, Hang</creatorcontrib><creatorcontrib>Fan, Yuchi</creatorcontrib><creatorcontrib>White, Henry S</creatorcontrib><creatorcontrib>Chen, Qianjin</creatorcontrib><title>Visualization and Quantification of Electrochemical H 2 Bubble Nucleation at Pt, Au, and MoS 2 Substrates</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>Electrolytic gas evolution is a significant phenomenon in many electrochemical technologies from water splitting, chloralkali process to fuel cells. Although it is known that gas evolution may substantially affect the ohmic resistance and mass transfer, studies focusing on the electrochemistry of individual bubbles are critical but also challenging. Here, we report an approach using scanning electrochemical cell microscopy (SECCM) with a single channel pipet to quantitatively study individual gas bubble nucleation on different electrode substrates, including conventional polycrystalline Pt and Au films, as well as the most interesting two-dimensional semiconductor MoS . Due to the confinement effect of the pipet, well-defined peak-shaped voltammetric features associated with single bubble nucleation and growth are consistently observed. From stochastic bubble nucleation measurement and finite element simulation, the surface H concentration corresponding to bubble nucleation is estimated to be ∼218, 137, and 157 mM, with critical nuclei contact angles of ∼156°, ∼161°, and ∼160° at polycrystalline Pt, Au, and MoS substrates, respectively. We further demonstrated the surface faceting at polycrystalline Pt is not specifically correlated with the bubble nucleation behavior.</description><subject>Electrolytes</subject><subject>Molybdenum</subject><subject>Water</subject><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkMtOwzAQRS0EolXpD7BA_oCm-Jnay1IBRSovFdhGY8cRRmlSxfYCvp5Ay2M1oztz7uIgdErJlBJGz8GG4JrQdmFKLCGa8gM0ZHymM55rcfhvH6BxCG-EECpzJhU5RgPOhNBciCHyLz4kqP0HRN82GJoSPyZooq-83UVthS9rZ2PX2le36dMaLzHDF8mY2uG7ZGu3ZyN-iBM8T5Pvmtt23b-tkwmxg-jCCTqqoA5uvJ8j9Hx1-bRYZqv765vFfJVZSqXInDQMSgFOCCg1o4QrC1byfGacqRxXAHnO-jOUSnFaaUWkMbSkWsmZVZaPENv12q4NoXNVse38Brr3gpLiS13xp67Yq-uhsx20TWbjyl_kRxT_BN1pbWg</recordid><startdate>20210226</startdate><enddate>20210226</enddate><creator>Liu, Yulong</creator><creator>Jin, Cheng</creator><creator>Liu, Yuwen</creator><creator>Ruiz, Karla Hernandez</creator><creator>Ren, Hang</creator><creator>Fan, Yuchi</creator><creator>White, Henry S</creator><creator>Chen, Qianjin</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7713-6748</orcidid><orcidid>https://orcid.org/0000-0002-9480-8881</orcidid><orcidid>https://orcid.org/0000-0002-5053-0996</orcidid><orcidid>https://orcid.org/0000-0001-9150-6178</orcidid></search><sort><creationdate>20210226</creationdate><title>Visualization and Quantification of Electrochemical H 2 Bubble Nucleation at Pt, Au, and MoS 2 Substrates</title><author>Liu, Yulong ; Jin, Cheng ; Liu, Yuwen ; Ruiz, Karla Hernandez ; Ren, Hang ; Fan, Yuchi ; White, Henry S ; Chen, Qianjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1154-e5b2ad4ae44ad921038cac5367bebfe38aa662ae4ad8831f9805bb1d19857c8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Electrolytes</topic><topic>Molybdenum</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yulong</creatorcontrib><creatorcontrib>Jin, Cheng</creatorcontrib><creatorcontrib>Liu, Yuwen</creatorcontrib><creatorcontrib>Ruiz, Karla Hernandez</creatorcontrib><creatorcontrib>Ren, Hang</creatorcontrib><creatorcontrib>Fan, Yuchi</creatorcontrib><creatorcontrib>White, Henry S</creatorcontrib><creatorcontrib>Chen, Qianjin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yulong</au><au>Jin, Cheng</au><au>Liu, Yuwen</au><au>Ruiz, Karla Hernandez</au><au>Ren, Hang</au><au>Fan, Yuchi</au><au>White, Henry S</au><au>Chen, Qianjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualization and Quantification of Electrochemical H 2 Bubble Nucleation at Pt, Au, and MoS 2 Substrates</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2021-02-26</date><risdate>2021</risdate><volume>6</volume><issue>2</issue><spage>355</spage><epage>363</epage><pages>355-363</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>Electrolytic gas evolution is a significant phenomenon in many electrochemical technologies from water splitting, chloralkali process to fuel cells. Although it is known that gas evolution may substantially affect the ohmic resistance and mass transfer, studies focusing on the electrochemistry of individual bubbles are critical but also challenging. Here, we report an approach using scanning electrochemical cell microscopy (SECCM) with a single channel pipet to quantitatively study individual gas bubble nucleation on different electrode substrates, including conventional polycrystalline Pt and Au films, as well as the most interesting two-dimensional semiconductor MoS . Due to the confinement effect of the pipet, well-defined peak-shaped voltammetric features associated with single bubble nucleation and growth are consistently observed. From stochastic bubble nucleation measurement and finite element simulation, the surface H concentration corresponding to bubble nucleation is estimated to be ∼218, 137, and 157 mM, with critical nuclei contact angles of ∼156°, ∼161°, and ∼160° at polycrystalline Pt, Au, and MoS substrates, respectively. We further demonstrated the surface faceting at polycrystalline Pt is not specifically correlated with the bubble nucleation behavior.</abstract><cop>United States</cop><pmid>32449344</pmid><doi>10.1021/acssensors.0c00913</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7713-6748</orcidid><orcidid>https://orcid.org/0000-0002-9480-8881</orcidid><orcidid>https://orcid.org/0000-0002-5053-0996</orcidid><orcidid>https://orcid.org/0000-0001-9150-6178</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2379-3694
ispartof ACS sensors, 2021-02, Vol.6 (2), p.355-363
issn 2379-3694
2379-3694
language eng
recordid cdi_crossref_primary_10_1021_acssensors_0c00913
source MEDLINE; ACS Publications
subjects Electrolytes
Molybdenum
Water
title Visualization and Quantification of Electrochemical H 2 Bubble Nucleation at Pt, Au, and MoS 2 Substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualization%20and%20Quantification%20of%20Electrochemical%20H%202%20Bubble%20Nucleation%20at%20Pt,%20Au,%20and%20MoS%202%20Substrates&rft.jtitle=ACS%20sensors&rft.au=Liu,%20Yulong&rft.date=2021-02-26&rft.volume=6&rft.issue=2&rft.spage=355&rft.epage=363&rft.pages=355-363&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.0c00913&rft_dat=%3Cpubmed_cross%3E32449344%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32449344&rfr_iscdi=true