Visualization and Quantification of Electrochemical H 2 Bubble Nucleation at Pt, Au, and MoS 2 Substrates
Electrolytic gas evolution is a significant phenomenon in many electrochemical technologies from water splitting, chloralkali process to fuel cells. Although it is known that gas evolution may substantially affect the ohmic resistance and mass transfer, studies focusing on the electrochemistry of in...
Gespeichert in:
Veröffentlicht in: | ACS sensors 2021-02, Vol.6 (2), p.355-363 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 363 |
---|---|
container_issue | 2 |
container_start_page | 355 |
container_title | ACS sensors |
container_volume | 6 |
creator | Liu, Yulong Jin, Cheng Liu, Yuwen Ruiz, Karla Hernandez Ren, Hang Fan, Yuchi White, Henry S Chen, Qianjin |
description | Electrolytic gas evolution is a significant phenomenon in many electrochemical technologies from water splitting, chloralkali process to fuel cells. Although it is known that gas evolution may substantially affect the ohmic resistance and mass transfer, studies focusing on the electrochemistry of individual bubbles are critical but also challenging. Here, we report an approach using scanning electrochemical cell microscopy (SECCM) with a single channel pipet to quantitatively study individual gas bubble nucleation on different electrode substrates, including conventional polycrystalline Pt and Au films, as well as the most interesting two-dimensional semiconductor MoS
. Due to the confinement effect of the pipet, well-defined peak-shaped voltammetric features associated with single bubble nucleation and growth are consistently observed. From stochastic bubble nucleation measurement and finite element simulation, the surface H
concentration corresponding to bubble nucleation is estimated to be ∼218, 137, and 157 mM, with critical nuclei contact angles of ∼156°, ∼161°, and ∼160° at polycrystalline Pt, Au, and MoS
substrates, respectively. We further demonstrated the surface faceting at polycrystalline Pt is not specifically correlated with the bubble nucleation behavior. |
doi_str_mv | 10.1021/acssensors.0c00913 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssensors_0c00913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32449344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1154-e5b2ad4ae44ad921038cac5367bebfe38aa662ae4ad8831f9805bb1d19857c8c3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EolXpD7BA_oCm-Jnay1IBRSovFdhGY8cRRmlSxfYCvp5Ay2M1oztz7uIgdErJlBJGz8GG4JrQdmFKLCGa8gM0ZHymM55rcfhvH6BxCG-EECpzJhU5RgPOhNBciCHyLz4kqP0HRN82GJoSPyZooq-83UVthS9rZ2PX2le36dMaLzHDF8mY2uG7ZGu3ZyN-iBM8T5Pvmtt23b-tkwmxg-jCCTqqoA5uvJ8j9Hx1-bRYZqv765vFfJVZSqXInDQMSgFOCCg1o4QrC1byfGacqRxXAHnO-jOUSnFaaUWkMbSkWsmZVZaPENv12q4NoXNVse38Brr3gpLiS13xp67Yq-uhsx20TWbjyl_kRxT_BN1pbWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Visualization and Quantification of Electrochemical H 2 Bubble Nucleation at Pt, Au, and MoS 2 Substrates</title><source>MEDLINE</source><source>ACS Publications</source><creator>Liu, Yulong ; Jin, Cheng ; Liu, Yuwen ; Ruiz, Karla Hernandez ; Ren, Hang ; Fan, Yuchi ; White, Henry S ; Chen, Qianjin</creator><creatorcontrib>Liu, Yulong ; Jin, Cheng ; Liu, Yuwen ; Ruiz, Karla Hernandez ; Ren, Hang ; Fan, Yuchi ; White, Henry S ; Chen, Qianjin</creatorcontrib><description>Electrolytic gas evolution is a significant phenomenon in many electrochemical technologies from water splitting, chloralkali process to fuel cells. Although it is known that gas evolution may substantially affect the ohmic resistance and mass transfer, studies focusing on the electrochemistry of individual bubbles are critical but also challenging. Here, we report an approach using scanning electrochemical cell microscopy (SECCM) with a single channel pipet to quantitatively study individual gas bubble nucleation on different electrode substrates, including conventional polycrystalline Pt and Au films, as well as the most interesting two-dimensional semiconductor MoS
. Due to the confinement effect of the pipet, well-defined peak-shaped voltammetric features associated with single bubble nucleation and growth are consistently observed. From stochastic bubble nucleation measurement and finite element simulation, the surface H
concentration corresponding to bubble nucleation is estimated to be ∼218, 137, and 157 mM, with critical nuclei contact angles of ∼156°, ∼161°, and ∼160° at polycrystalline Pt, Au, and MoS
substrates, respectively. We further demonstrated the surface faceting at polycrystalline Pt is not specifically correlated with the bubble nucleation behavior.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.0c00913</identifier><identifier>PMID: 32449344</identifier><language>eng</language><publisher>United States</publisher><subject>Electrolytes ; Molybdenum ; Water</subject><ispartof>ACS sensors, 2021-02, Vol.6 (2), p.355-363</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1154-e5b2ad4ae44ad921038cac5367bebfe38aa662ae4ad8831f9805bb1d19857c8c3</citedby><cites>FETCH-LOGICAL-c1154-e5b2ad4ae44ad921038cac5367bebfe38aa662ae4ad8831f9805bb1d19857c8c3</cites><orcidid>0000-0001-7713-6748 ; 0000-0002-9480-8881 ; 0000-0002-5053-0996 ; 0000-0001-9150-6178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2751,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32449344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yulong</creatorcontrib><creatorcontrib>Jin, Cheng</creatorcontrib><creatorcontrib>Liu, Yuwen</creatorcontrib><creatorcontrib>Ruiz, Karla Hernandez</creatorcontrib><creatorcontrib>Ren, Hang</creatorcontrib><creatorcontrib>Fan, Yuchi</creatorcontrib><creatorcontrib>White, Henry S</creatorcontrib><creatorcontrib>Chen, Qianjin</creatorcontrib><title>Visualization and Quantification of Electrochemical H 2 Bubble Nucleation at Pt, Au, and MoS 2 Substrates</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>Electrolytic gas evolution is a significant phenomenon in many electrochemical technologies from water splitting, chloralkali process to fuel cells. Although it is known that gas evolution may substantially affect the ohmic resistance and mass transfer, studies focusing on the electrochemistry of individual bubbles are critical but also challenging. Here, we report an approach using scanning electrochemical cell microscopy (SECCM) with a single channel pipet to quantitatively study individual gas bubble nucleation on different electrode substrates, including conventional polycrystalline Pt and Au films, as well as the most interesting two-dimensional semiconductor MoS
. Due to the confinement effect of the pipet, well-defined peak-shaped voltammetric features associated with single bubble nucleation and growth are consistently observed. From stochastic bubble nucleation measurement and finite element simulation, the surface H
concentration corresponding to bubble nucleation is estimated to be ∼218, 137, and 157 mM, with critical nuclei contact angles of ∼156°, ∼161°, and ∼160° at polycrystalline Pt, Au, and MoS
substrates, respectively. We further demonstrated the surface faceting at polycrystalline Pt is not specifically correlated with the bubble nucleation behavior.</description><subject>Electrolytes</subject><subject>Molybdenum</subject><subject>Water</subject><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkMtOwzAQRS0EolXpD7BA_oCm-Jnay1IBRSovFdhGY8cRRmlSxfYCvp5Ay2M1oztz7uIgdErJlBJGz8GG4JrQdmFKLCGa8gM0ZHymM55rcfhvH6BxCG-EECpzJhU5RgPOhNBciCHyLz4kqP0HRN82GJoSPyZooq-83UVthS9rZ2PX2le36dMaLzHDF8mY2uG7ZGu3ZyN-iBM8T5Pvmtt23b-tkwmxg-jCCTqqoA5uvJ8j9Hx1-bRYZqv765vFfJVZSqXInDQMSgFOCCg1o4QrC1byfGacqRxXAHnO-jOUSnFaaUWkMbSkWsmZVZaPENv12q4NoXNVse38Brr3gpLiS13xp67Yq-uhsx20TWbjyl_kRxT_BN1pbWg</recordid><startdate>20210226</startdate><enddate>20210226</enddate><creator>Liu, Yulong</creator><creator>Jin, Cheng</creator><creator>Liu, Yuwen</creator><creator>Ruiz, Karla Hernandez</creator><creator>Ren, Hang</creator><creator>Fan, Yuchi</creator><creator>White, Henry S</creator><creator>Chen, Qianjin</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7713-6748</orcidid><orcidid>https://orcid.org/0000-0002-9480-8881</orcidid><orcidid>https://orcid.org/0000-0002-5053-0996</orcidid><orcidid>https://orcid.org/0000-0001-9150-6178</orcidid></search><sort><creationdate>20210226</creationdate><title>Visualization and Quantification of Electrochemical H 2 Bubble Nucleation at Pt, Au, and MoS 2 Substrates</title><author>Liu, Yulong ; Jin, Cheng ; Liu, Yuwen ; Ruiz, Karla Hernandez ; Ren, Hang ; Fan, Yuchi ; White, Henry S ; Chen, Qianjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1154-e5b2ad4ae44ad921038cac5367bebfe38aa662ae4ad8831f9805bb1d19857c8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Electrolytes</topic><topic>Molybdenum</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yulong</creatorcontrib><creatorcontrib>Jin, Cheng</creatorcontrib><creatorcontrib>Liu, Yuwen</creatorcontrib><creatorcontrib>Ruiz, Karla Hernandez</creatorcontrib><creatorcontrib>Ren, Hang</creatorcontrib><creatorcontrib>Fan, Yuchi</creatorcontrib><creatorcontrib>White, Henry S</creatorcontrib><creatorcontrib>Chen, Qianjin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yulong</au><au>Jin, Cheng</au><au>Liu, Yuwen</au><au>Ruiz, Karla Hernandez</au><au>Ren, Hang</au><au>Fan, Yuchi</au><au>White, Henry S</au><au>Chen, Qianjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualization and Quantification of Electrochemical H 2 Bubble Nucleation at Pt, Au, and MoS 2 Substrates</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2021-02-26</date><risdate>2021</risdate><volume>6</volume><issue>2</issue><spage>355</spage><epage>363</epage><pages>355-363</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>Electrolytic gas evolution is a significant phenomenon in many electrochemical technologies from water splitting, chloralkali process to fuel cells. Although it is known that gas evolution may substantially affect the ohmic resistance and mass transfer, studies focusing on the electrochemistry of individual bubbles are critical but also challenging. Here, we report an approach using scanning electrochemical cell microscopy (SECCM) with a single channel pipet to quantitatively study individual gas bubble nucleation on different electrode substrates, including conventional polycrystalline Pt and Au films, as well as the most interesting two-dimensional semiconductor MoS
. Due to the confinement effect of the pipet, well-defined peak-shaped voltammetric features associated with single bubble nucleation and growth are consistently observed. From stochastic bubble nucleation measurement and finite element simulation, the surface H
concentration corresponding to bubble nucleation is estimated to be ∼218, 137, and 157 mM, with critical nuclei contact angles of ∼156°, ∼161°, and ∼160° at polycrystalline Pt, Au, and MoS
substrates, respectively. We further demonstrated the surface faceting at polycrystalline Pt is not specifically correlated with the bubble nucleation behavior.</abstract><cop>United States</cop><pmid>32449344</pmid><doi>10.1021/acssensors.0c00913</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7713-6748</orcidid><orcidid>https://orcid.org/0000-0002-9480-8881</orcidid><orcidid>https://orcid.org/0000-0002-5053-0996</orcidid><orcidid>https://orcid.org/0000-0001-9150-6178</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-3694 |
ispartof | ACS sensors, 2021-02, Vol.6 (2), p.355-363 |
issn | 2379-3694 2379-3694 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acssensors_0c00913 |
source | MEDLINE; ACS Publications |
subjects | Electrolytes Molybdenum Water |
title | Visualization and Quantification of Electrochemical H 2 Bubble Nucleation at Pt, Au, and MoS 2 Substrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualization%20and%20Quantification%20of%20Electrochemical%20H%202%20Bubble%20Nucleation%20at%20Pt,%20Au,%20and%20MoS%202%20Substrates&rft.jtitle=ACS%20sensors&rft.au=Liu,%20Yulong&rft.date=2021-02-26&rft.volume=6&rft.issue=2&rft.spage=355&rft.epage=363&rft.pages=355-363&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.0c00913&rft_dat=%3Cpubmed_cross%3E32449344%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32449344&rfr_iscdi=true |