Ionic Field Screening in MAPbBr 3 Crystals Revealed from Remnant Sensitivity in X-ray Detection
Research on metal halide perovskites as absorbers for X-ray detection is an attractive subject due to the optimal optoelectronic properties of these materials for high-sensitivity applications. However, the contact degradation and the long-term instability of the current limit the performance of the...
Gespeichert in:
Veröffentlicht in: | ACS Physical Chemistry Au 2023-07, Vol.3 (4), p.386-393 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Research on metal halide perovskites as absorbers for X-ray detection is an attractive subject due to the optimal optoelectronic properties of these materials for high-sensitivity applications. However, the contact degradation and the long-term instability of the current limit the performance of the devices, in close causality with the dual electronic-ionic conductivity of these perovskites. Herein, millimeter-thick methylammonium-lead bromide (MAPbBr
) single and polycrystalline samples are approached by characterizing their long-term dark current and photocurrent under X-ray incidence. It is shown how both the dark current and the sensitivity of the detectors follow similar trends at short-circuit (
= 0 V) after biasing. By performing drift-diffusion numerical simulations, it is revealed how large ionic-related built-in fields not only produce relaxations to equilibrium lasting up to tens of hours but also continue to affect the charge kinetics under homogeneous low photogeneration rates. Furthermore, a method is suggested for estimating the ionic mobility and concentration by analyzing the initial current at short-circuit and the characteristic diffusion times. |
---|---|
ISSN: | 2694-2445 2694-2445 |
DOI: | 10.1021/acsphyschemau.3c00002 |