Trapped Exciton–Polariton Condensate by Spatial Confinement in a Perovskite Microcavity

Lead halide perovskites exhibit good performance in room-temperature exciton–polariton lasers and efficient flow of polariton condensates. Shaping and directing polariton condensates by confining the potential is essential for polariton-based optoelectronic devices, which have seldom been explored b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS photonics 2020-02, Vol.7 (2), p.327-337
Hauptverfasser: Zhang, Shuai, Chen, Jie, Shi, Jia, Fu, Lei, Du, Wenna, Sui, Xinyu, Mi, Yang, Jia, Zhili, Liu, Fengjing, Shi, Jianwei, Wu, Xianxin, Tang, Ning, Zhang, Qing, Liu, Xinfeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 337
container_issue 2
container_start_page 327
container_title ACS photonics
container_volume 7
creator Zhang, Shuai
Chen, Jie
Shi, Jia
Fu, Lei
Du, Wenna
Sui, Xinyu
Mi, Yang
Jia, Zhili
Liu, Fengjing
Shi, Jianwei
Wu, Xianxin
Tang, Ning
Zhang, Qing
Liu, Xinfeng
description Lead halide perovskites exhibit good performance in room-temperature exciton–polariton lasers and efficient flow of polariton condensates. Shaping and directing polariton condensates by confining the potential is essential for polariton-based optoelectronic devices, which have seldom been explored based on perovskite materials. Here, we investigate the trapping of polaritons in micron-sized CsPbBr3 flakes embedded in a microcavity by varying the negative detuning energy (from −36 to −172 meV) at room temperature. The confinement by the crystal edge results in quantized polariton states both below and above the condensed threshold. As the cavity is more negatively detuned (Δ ≤ −118 meV), the condensed polaritons undergo a transition from the ground state to metastable states with a finite group velocity (∼50 μm/ps at Δ = −118 meV). The metastable polariton condensates can be optically and stably driven between different polariton states by simply changing the pump fluence. The manipulations of the polariton states reveal the effective control of polariton relaxation in quantized polariton states by the underlying exciton–polariton and polariton–polariton scattering. Our findings pave the way for novel polaritonic light sources and integrated polariton devices through the trap engineering of perovskite microcavities.
doi_str_mv 10.1021/acsphotonics.9b01240
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsphotonics_9b01240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b625329626</sourcerecordid><originalsourceid>FETCH-LOGICAL-a358t-16fb2e8eda149d74e870f890ea2a16e882a257ca64ac5ce11e6fa55b173006bc3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EElXpDVj4Ailjx3HSJarKj1REJcqCVTRxJsKltSM7VHTHHbghJyFVu-iK1TzNzHsz-hi7FjAWIMUNmti--847a-J4UoGQCs7YQKYpJAqkPD_Rl2wU4woABGSp1mrA3pYB25ZqPvsytg_5_f5Z-DWGveZT72pyETvi1Y6_tNhZXO-7jXW0Iddx6zjyBQW_jR-2X3uyJniDW9vtrthFg-tIo2Mdste72XL6kMyf7x-nt_ME06zoEqGbSlJBNQo1qXNFRQ5NMQFCiUJTUUiUWW5QKzSZISFIN5hllchTAF2ZdMjUIbe_HGOgpmyD3WDYlQLKPaHylFB5JNTb4GDrp-XKfwbXP_m_5Q_GNHCt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Trapped Exciton–Polariton Condensate by Spatial Confinement in a Perovskite Microcavity</title><source>American Chemical Society Journals</source><creator>Zhang, Shuai ; Chen, Jie ; Shi, Jia ; Fu, Lei ; Du, Wenna ; Sui, Xinyu ; Mi, Yang ; Jia, Zhili ; Liu, Fengjing ; Shi, Jianwei ; Wu, Xianxin ; Tang, Ning ; Zhang, Qing ; Liu, Xinfeng</creator><creatorcontrib>Zhang, Shuai ; Chen, Jie ; Shi, Jia ; Fu, Lei ; Du, Wenna ; Sui, Xinyu ; Mi, Yang ; Jia, Zhili ; Liu, Fengjing ; Shi, Jianwei ; Wu, Xianxin ; Tang, Ning ; Zhang, Qing ; Liu, Xinfeng</creatorcontrib><description>Lead halide perovskites exhibit good performance in room-temperature exciton–polariton lasers and efficient flow of polariton condensates. Shaping and directing polariton condensates by confining the potential is essential for polariton-based optoelectronic devices, which have seldom been explored based on perovskite materials. Here, we investigate the trapping of polaritons in micron-sized CsPbBr3 flakes embedded in a microcavity by varying the negative detuning energy (from −36 to −172 meV) at room temperature. The confinement by the crystal edge results in quantized polariton states both below and above the condensed threshold. As the cavity is more negatively detuned (Δ ≤ −118 meV), the condensed polaritons undergo a transition from the ground state to metastable states with a finite group velocity (∼50 μm/ps at Δ = −118 meV). The metastable polariton condensates can be optically and stably driven between different polariton states by simply changing the pump fluence. The manipulations of the polariton states reveal the effective control of polariton relaxation in quantized polariton states by the underlying exciton–polariton and polariton–polariton scattering. Our findings pave the way for novel polaritonic light sources and integrated polariton devices through the trap engineering of perovskite microcavities.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.9b01240</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS photonics, 2020-02, Vol.7 (2), p.327-337</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a358t-16fb2e8eda149d74e870f890ea2a16e882a257ca64ac5ce11e6fa55b173006bc3</citedby><cites>FETCH-LOGICAL-a358t-16fb2e8eda149d74e870f890ea2a16e882a257ca64ac5ce11e6fa55b173006bc3</cites><orcidid>0000-0002-6869-0381 ; 0000-0003-2131-5805 ; 0000-0002-7662-7171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsphotonics.9b01240$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsphotonics.9b01240$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Shi, Jia</creatorcontrib><creatorcontrib>Fu, Lei</creatorcontrib><creatorcontrib>Du, Wenna</creatorcontrib><creatorcontrib>Sui, Xinyu</creatorcontrib><creatorcontrib>Mi, Yang</creatorcontrib><creatorcontrib>Jia, Zhili</creatorcontrib><creatorcontrib>Liu, Fengjing</creatorcontrib><creatorcontrib>Shi, Jianwei</creatorcontrib><creatorcontrib>Wu, Xianxin</creatorcontrib><creatorcontrib>Tang, Ning</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Liu, Xinfeng</creatorcontrib><title>Trapped Exciton–Polariton Condensate by Spatial Confinement in a Perovskite Microcavity</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>Lead halide perovskites exhibit good performance in room-temperature exciton–polariton lasers and efficient flow of polariton condensates. Shaping and directing polariton condensates by confining the potential is essential for polariton-based optoelectronic devices, which have seldom been explored based on perovskite materials. Here, we investigate the trapping of polaritons in micron-sized CsPbBr3 flakes embedded in a microcavity by varying the negative detuning energy (from −36 to −172 meV) at room temperature. The confinement by the crystal edge results in quantized polariton states both below and above the condensed threshold. As the cavity is more negatively detuned (Δ ≤ −118 meV), the condensed polaritons undergo a transition from the ground state to metastable states with a finite group velocity (∼50 μm/ps at Δ = −118 meV). The metastable polariton condensates can be optically and stably driven between different polariton states by simply changing the pump fluence. The manipulations of the polariton states reveal the effective control of polariton relaxation in quantized polariton states by the underlying exciton–polariton and polariton–polariton scattering. Our findings pave the way for novel polaritonic light sources and integrated polariton devices through the trap engineering of perovskite microcavities.</description><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EElXpDVj4Ailjx3HSJarKj1REJcqCVTRxJsKltSM7VHTHHbghJyFVu-iK1TzNzHsz-hi7FjAWIMUNmti--847a-J4UoGQCs7YQKYpJAqkPD_Rl2wU4woABGSp1mrA3pYB25ZqPvsytg_5_f5Z-DWGveZT72pyETvi1Y6_tNhZXO-7jXW0Iddx6zjyBQW_jR-2X3uyJniDW9vtrthFg-tIo2Mdste72XL6kMyf7x-nt_ME06zoEqGbSlJBNQo1qXNFRQ5NMQFCiUJTUUiUWW5QKzSZISFIN5hllchTAF2ZdMjUIbe_HGOgpmyD3WDYlQLKPaHylFB5JNTb4GDrp-XKfwbXP_m_5Q_GNHCt</recordid><startdate>20200219</startdate><enddate>20200219</enddate><creator>Zhang, Shuai</creator><creator>Chen, Jie</creator><creator>Shi, Jia</creator><creator>Fu, Lei</creator><creator>Du, Wenna</creator><creator>Sui, Xinyu</creator><creator>Mi, Yang</creator><creator>Jia, Zhili</creator><creator>Liu, Fengjing</creator><creator>Shi, Jianwei</creator><creator>Wu, Xianxin</creator><creator>Tang, Ning</creator><creator>Zhang, Qing</creator><creator>Liu, Xinfeng</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6869-0381</orcidid><orcidid>https://orcid.org/0000-0003-2131-5805</orcidid><orcidid>https://orcid.org/0000-0002-7662-7171</orcidid></search><sort><creationdate>20200219</creationdate><title>Trapped Exciton–Polariton Condensate by Spatial Confinement in a Perovskite Microcavity</title><author>Zhang, Shuai ; Chen, Jie ; Shi, Jia ; Fu, Lei ; Du, Wenna ; Sui, Xinyu ; Mi, Yang ; Jia, Zhili ; Liu, Fengjing ; Shi, Jianwei ; Wu, Xianxin ; Tang, Ning ; Zhang, Qing ; Liu, Xinfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a358t-16fb2e8eda149d74e870f890ea2a16e882a257ca64ac5ce11e6fa55b173006bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuai</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Shi, Jia</creatorcontrib><creatorcontrib>Fu, Lei</creatorcontrib><creatorcontrib>Du, Wenna</creatorcontrib><creatorcontrib>Sui, Xinyu</creatorcontrib><creatorcontrib>Mi, Yang</creatorcontrib><creatorcontrib>Jia, Zhili</creatorcontrib><creatorcontrib>Liu, Fengjing</creatorcontrib><creatorcontrib>Shi, Jianwei</creatorcontrib><creatorcontrib>Wu, Xianxin</creatorcontrib><creatorcontrib>Tang, Ning</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Liu, Xinfeng</creatorcontrib><collection>CrossRef</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuai</au><au>Chen, Jie</au><au>Shi, Jia</au><au>Fu, Lei</au><au>Du, Wenna</au><au>Sui, Xinyu</au><au>Mi, Yang</au><au>Jia, Zhili</au><au>Liu, Fengjing</au><au>Shi, Jianwei</au><au>Wu, Xianxin</au><au>Tang, Ning</au><au>Zhang, Qing</au><au>Liu, Xinfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trapped Exciton–Polariton Condensate by Spatial Confinement in a Perovskite Microcavity</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2020-02-19</date><risdate>2020</risdate><volume>7</volume><issue>2</issue><spage>327</spage><epage>337</epage><pages>327-337</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>Lead halide perovskites exhibit good performance in room-temperature exciton–polariton lasers and efficient flow of polariton condensates. Shaping and directing polariton condensates by confining the potential is essential for polariton-based optoelectronic devices, which have seldom been explored based on perovskite materials. Here, we investigate the trapping of polaritons in micron-sized CsPbBr3 flakes embedded in a microcavity by varying the negative detuning energy (from −36 to −172 meV) at room temperature. The confinement by the crystal edge results in quantized polariton states both below and above the condensed threshold. As the cavity is more negatively detuned (Δ ≤ −118 meV), the condensed polaritons undergo a transition from the ground state to metastable states with a finite group velocity (∼50 μm/ps at Δ = −118 meV). The metastable polariton condensates can be optically and stably driven between different polariton states by simply changing the pump fluence. The manipulations of the polariton states reveal the effective control of polariton relaxation in quantized polariton states by the underlying exciton–polariton and polariton–polariton scattering. Our findings pave the way for novel polaritonic light sources and integrated polariton devices through the trap engineering of perovskite microcavities.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.9b01240</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6869-0381</orcidid><orcidid>https://orcid.org/0000-0003-2131-5805</orcidid><orcidid>https://orcid.org/0000-0002-7662-7171</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2330-4022
ispartof ACS photonics, 2020-02, Vol.7 (2), p.327-337
issn 2330-4022
2330-4022
language eng
recordid cdi_crossref_primary_10_1021_acsphotonics_9b01240
source American Chemical Society Journals
title Trapped Exciton–Polariton Condensate by Spatial Confinement in a Perovskite Microcavity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trapped%20Exciton%E2%80%93Polariton%20Condensate%20by%20Spatial%20Confinement%20in%20a%20Perovskite%20Microcavity&rft.jtitle=ACS%20photonics&rft.au=Zhang,%20Shuai&rft.date=2020-02-19&rft.volume=7&rft.issue=2&rft.spage=327&rft.epage=337&rft.pages=327-337&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.9b01240&rft_dat=%3Cacs_cross%3Eb625329626%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true