Deep Learning Enhanced Mobile-Phone Microscopy

Mobile phones have facilitated the creation of field-portable, cost-effective imaging and sensing technologies that approach laboratory-grade instrument performance. However, the optical imaging interfaces of mobile phones are not designed for microscopy and produce distortions in imaging microscopi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS photonics 2018-06, Vol.5 (6), p.2354-2364
Hauptverfasser: Rivenson, Yair, Ceylan Koydemir, Hatice, Wang, Hongda, Wei, Zhensong, Ren, Zhengshuang, Günaydın, Harun, Zhang, Yibo, Göröcs, Zoltán, Liang, Kyle, Tseng, Derek, Ozcan, Aydogan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2364
container_issue 6
container_start_page 2354
container_title ACS photonics
container_volume 5
creator Rivenson, Yair
Ceylan Koydemir, Hatice
Wang, Hongda
Wei, Zhensong
Ren, Zhengshuang
Günaydın, Harun
Zhang, Yibo
Göröcs, Zoltán
Liang, Kyle
Tseng, Derek
Ozcan, Aydogan
description Mobile phones have facilitated the creation of field-portable, cost-effective imaging and sensing technologies that approach laboratory-grade instrument performance. However, the optical imaging interfaces of mobile phones are not designed for microscopy and produce distortions in imaging microscopic specimens. Here, we report on the use of deep learning to correct such distortions introduced by mobile-phone-based microscopes, facilitating the production of high-resolution, denoised, and color-corrected images, matching the performance of benchtop microscopes with high-end objective lenses, also extending their limited depth of field. After training a convolutional neural network, we successfully imaged various samples, including human tissue sections and Papanicolaou and blood smears, where the recorded images were highly compressed to ease storage and transmission. This method is applicable to other low-cost, aberrated imaging systems and could offer alternatives for costly and bulky microscopes, while also providing a framework for standardization of optical images for clinical and biomedical applications.
doi_str_mv 10.1021/acsphotonics.8b00146
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsphotonics_8b00146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b665840429</sourcerecordid><originalsourceid>FETCH-LOGICAL-a292t-a4a43b23eff1e4218836f27602f20f4912b92c3123e72e46536706580577e0533</originalsourceid><addsrcrecordid>eNp9j8FOwzAQRC0EElXpH3DIDySs146THFEpUCkVHOBsOWZNUhU7isuhf4-r9tATpx1pZ3bnMXbPoeCA_MHYOPZhH_xgY1F3AFyqKzZDISCXgHh9oW_ZIsYtJA-UQik5Y8UT0Zi1ZCY_-O9s5XvjLX1lm9ANO8rf--Ap2wx2CtGG8XDHbpzZRVqc55x9Pq8-lq95-_ayXj62ucEG97mRRooOBTnHSSKva6EcVgrQITjZcOwatIInR4UkVSpTgSprKKuKUjUxZ_J09_g4TuT0OA0_ZjpoDvqIrS-x9Rk7xeAUS1u9Db-TTyX_j_wB1U9c3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep Learning Enhanced Mobile-Phone Microscopy</title><source>American Chemical Society Journals</source><creator>Rivenson, Yair ; Ceylan Koydemir, Hatice ; Wang, Hongda ; Wei, Zhensong ; Ren, Zhengshuang ; Günaydın, Harun ; Zhang, Yibo ; Göröcs, Zoltán ; Liang, Kyle ; Tseng, Derek ; Ozcan, Aydogan</creator><creatorcontrib>Rivenson, Yair ; Ceylan Koydemir, Hatice ; Wang, Hongda ; Wei, Zhensong ; Ren, Zhengshuang ; Günaydın, Harun ; Zhang, Yibo ; Göröcs, Zoltán ; Liang, Kyle ; Tseng, Derek ; Ozcan, Aydogan</creatorcontrib><description>Mobile phones have facilitated the creation of field-portable, cost-effective imaging and sensing technologies that approach laboratory-grade instrument performance. However, the optical imaging interfaces of mobile phones are not designed for microscopy and produce distortions in imaging microscopic specimens. Here, we report on the use of deep learning to correct such distortions introduced by mobile-phone-based microscopes, facilitating the production of high-resolution, denoised, and color-corrected images, matching the performance of benchtop microscopes with high-end objective lenses, also extending their limited depth of field. After training a convolutional neural network, we successfully imaged various samples, including human tissue sections and Papanicolaou and blood smears, where the recorded images were highly compressed to ease storage and transmission. This method is applicable to other low-cost, aberrated imaging systems and could offer alternatives for costly and bulky microscopes, while also providing a framework for standardization of optical images for clinical and biomedical applications.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.8b00146</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS photonics, 2018-06, Vol.5 (6), p.2354-2364</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a292t-a4a43b23eff1e4218836f27602f20f4912b92c3123e72e46536706580577e0533</citedby><cites>FETCH-LOGICAL-a292t-a4a43b23eff1e4218836f27602f20f4912b92c3123e72e46536706580577e0533</cites><orcidid>0000-0002-0717-683X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsphotonics.8b00146$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsphotonics.8b00146$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Rivenson, Yair</creatorcontrib><creatorcontrib>Ceylan Koydemir, Hatice</creatorcontrib><creatorcontrib>Wang, Hongda</creatorcontrib><creatorcontrib>Wei, Zhensong</creatorcontrib><creatorcontrib>Ren, Zhengshuang</creatorcontrib><creatorcontrib>Günaydın, Harun</creatorcontrib><creatorcontrib>Zhang, Yibo</creatorcontrib><creatorcontrib>Göröcs, Zoltán</creatorcontrib><creatorcontrib>Liang, Kyle</creatorcontrib><creatorcontrib>Tseng, Derek</creatorcontrib><creatorcontrib>Ozcan, Aydogan</creatorcontrib><title>Deep Learning Enhanced Mobile-Phone Microscopy</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>Mobile phones have facilitated the creation of field-portable, cost-effective imaging and sensing technologies that approach laboratory-grade instrument performance. However, the optical imaging interfaces of mobile phones are not designed for microscopy and produce distortions in imaging microscopic specimens. Here, we report on the use of deep learning to correct such distortions introduced by mobile-phone-based microscopes, facilitating the production of high-resolution, denoised, and color-corrected images, matching the performance of benchtop microscopes with high-end objective lenses, also extending their limited depth of field. After training a convolutional neural network, we successfully imaged various samples, including human tissue sections and Papanicolaou and blood smears, where the recorded images were highly compressed to ease storage and transmission. This method is applicable to other low-cost, aberrated imaging systems and could offer alternatives for costly and bulky microscopes, while also providing a framework for standardization of optical images for clinical and biomedical applications.</description><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j8FOwzAQRC0EElXpH3DIDySs146THFEpUCkVHOBsOWZNUhU7isuhf4-r9tATpx1pZ3bnMXbPoeCA_MHYOPZhH_xgY1F3AFyqKzZDISCXgHh9oW_ZIsYtJA-UQik5Y8UT0Zi1ZCY_-O9s5XvjLX1lm9ANO8rf--Ap2wx2CtGG8XDHbpzZRVqc55x9Pq8-lq95-_ayXj62ucEG97mRRooOBTnHSSKva6EcVgrQITjZcOwatIInR4UkVSpTgSprKKuKUjUxZ_J09_g4TuT0OA0_ZjpoDvqIrS-x9Rk7xeAUS1u9Db-TTyX_j_wB1U9c3g</recordid><startdate>20180620</startdate><enddate>20180620</enddate><creator>Rivenson, Yair</creator><creator>Ceylan Koydemir, Hatice</creator><creator>Wang, Hongda</creator><creator>Wei, Zhensong</creator><creator>Ren, Zhengshuang</creator><creator>Günaydın, Harun</creator><creator>Zhang, Yibo</creator><creator>Göröcs, Zoltán</creator><creator>Liang, Kyle</creator><creator>Tseng, Derek</creator><creator>Ozcan, Aydogan</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0717-683X</orcidid></search><sort><creationdate>20180620</creationdate><title>Deep Learning Enhanced Mobile-Phone Microscopy</title><author>Rivenson, Yair ; Ceylan Koydemir, Hatice ; Wang, Hongda ; Wei, Zhensong ; Ren, Zhengshuang ; Günaydın, Harun ; Zhang, Yibo ; Göröcs, Zoltán ; Liang, Kyle ; Tseng, Derek ; Ozcan, Aydogan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a292t-a4a43b23eff1e4218836f27602f20f4912b92c3123e72e46536706580577e0533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Rivenson, Yair</creatorcontrib><creatorcontrib>Ceylan Koydemir, Hatice</creatorcontrib><creatorcontrib>Wang, Hongda</creatorcontrib><creatorcontrib>Wei, Zhensong</creatorcontrib><creatorcontrib>Ren, Zhengshuang</creatorcontrib><creatorcontrib>Günaydın, Harun</creatorcontrib><creatorcontrib>Zhang, Yibo</creatorcontrib><creatorcontrib>Göröcs, Zoltán</creatorcontrib><creatorcontrib>Liang, Kyle</creatorcontrib><creatorcontrib>Tseng, Derek</creatorcontrib><creatorcontrib>Ozcan, Aydogan</creatorcontrib><collection>CrossRef</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivenson, Yair</au><au>Ceylan Koydemir, Hatice</au><au>Wang, Hongda</au><au>Wei, Zhensong</au><au>Ren, Zhengshuang</au><au>Günaydın, Harun</au><au>Zhang, Yibo</au><au>Göröcs, Zoltán</au><au>Liang, Kyle</au><au>Tseng, Derek</au><au>Ozcan, Aydogan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Enhanced Mobile-Phone Microscopy</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2018-06-20</date><risdate>2018</risdate><volume>5</volume><issue>6</issue><spage>2354</spage><epage>2364</epage><pages>2354-2364</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>Mobile phones have facilitated the creation of field-portable, cost-effective imaging and sensing technologies that approach laboratory-grade instrument performance. However, the optical imaging interfaces of mobile phones are not designed for microscopy and produce distortions in imaging microscopic specimens. Here, we report on the use of deep learning to correct such distortions introduced by mobile-phone-based microscopes, facilitating the production of high-resolution, denoised, and color-corrected images, matching the performance of benchtop microscopes with high-end objective lenses, also extending their limited depth of field. After training a convolutional neural network, we successfully imaged various samples, including human tissue sections and Papanicolaou and blood smears, where the recorded images were highly compressed to ease storage and transmission. This method is applicable to other low-cost, aberrated imaging systems and could offer alternatives for costly and bulky microscopes, while also providing a framework for standardization of optical images for clinical and biomedical applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.8b00146</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0717-683X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2330-4022
ispartof ACS photonics, 2018-06, Vol.5 (6), p.2354-2364
issn 2330-4022
2330-4022
language eng
recordid cdi_crossref_primary_10_1021_acsphotonics_8b00146
source American Chemical Society Journals
title Deep Learning Enhanced Mobile-Phone Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Enhanced%20Mobile-Phone%20Microscopy&rft.jtitle=ACS%20photonics&rft.au=Rivenson,%20Yair&rft.date=2018-06-20&rft.volume=5&rft.issue=6&rft.spage=2354&rft.epage=2364&rft.pages=2354-2364&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.8b00146&rft_dat=%3Cacs_cross%3Eb665840429%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true