Plasmonic Antireflection Coating for Photoconductive Terahertz Generation
Plasmon-enhanced photoconductive antennas allow for improved performance, particularly in below-band-gap absorption devices using low-temperature-grown GaAs. Here we design the plasmonic nanostructures to act as antireflection coatings as well, achieving below 10% reflection at 1570 nm wavelength in...
Gespeichert in:
Veröffentlicht in: | ACS photonics 2017-06, Vol.4 (6), p.1350-1354 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1354 |
---|---|
container_issue | 6 |
container_start_page | 1350 |
container_title | ACS photonics |
container_volume | 4 |
creator | Fesharaki, Faezeh Jooshesh, Afshin Bahrami-Yekta, Vahid Mahtab, Mahsa Tiedje, Tom Darcie, Thomas E Gordon, Reuven |
description | Plasmon-enhanced photoconductive antennas allow for improved performance, particularly in below-band-gap absorption devices using low-temperature-grown GaAs. Here we design the plasmonic nanostructures to act as antireflection coatings as well, achieving below 10% reflection at 1570 nm wavelength in an optimized device. Quantitative agreement is seen between experiment and theory. Terahertz emission field amplitudes demonstrate 18 times enhancement compared to that of a conventional terahertz photoconductive antenna on the same substrate. |
doi_str_mv | 10.1021/acsphotonics.7b00410 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsphotonics_7b00410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c443054651</sourcerecordid><originalsourceid>FETCH-LOGICAL-a358t-3956f3a3c92e644463f9e38ea0314f50f3360a16542d7e4b547e924e40f2e0063</originalsourceid><addsrcrecordid>eNp9kEFrwkAQhZfSQsX6D3rIH4id3ZlszFFCawWhHuw5rHG2RuKu7MZC--uboAdPPc2Dx_fm8YR4ljCVoOSLqeNp7zvvmjpO8y0ASbgTI4UIKYFS9zf6UUxiPACAhAy1ppFYrlsTjwOczF3XBLYt113jXVJ60zXuK7E-JOvhQe3d7tx735xsOJg9h-43WbDr9QA8iQdr2siT6x2Lz7fXTfmerj4Wy3K-Sg1msy7FItMWDdaFYk1EGm3BOGMDKMlmYBE1GKkzUrucaZtRzoUiJrCKATSOBV1y6-Bj7AtXp9AcTfipJFTDItXtItV1kR6DC9a71cGfg-tL_o_8AZB1aL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Plasmonic Antireflection Coating for Photoconductive Terahertz Generation</title><source>ACS Publications</source><creator>Fesharaki, Faezeh ; Jooshesh, Afshin ; Bahrami-Yekta, Vahid ; Mahtab, Mahsa ; Tiedje, Tom ; Darcie, Thomas E ; Gordon, Reuven</creator><creatorcontrib>Fesharaki, Faezeh ; Jooshesh, Afshin ; Bahrami-Yekta, Vahid ; Mahtab, Mahsa ; Tiedje, Tom ; Darcie, Thomas E ; Gordon, Reuven</creatorcontrib><description>Plasmon-enhanced photoconductive antennas allow for improved performance, particularly in below-band-gap absorption devices using low-temperature-grown GaAs. Here we design the plasmonic nanostructures to act as antireflection coatings as well, achieving below 10% reflection at 1570 nm wavelength in an optimized device. Quantitative agreement is seen between experiment and theory. Terahertz emission field amplitudes demonstrate 18 times enhancement compared to that of a conventional terahertz photoconductive antenna on the same substrate.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.7b00410</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS photonics, 2017-06, Vol.4 (6), p.1350-1354</ispartof><rights>Copyright © 2017 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a358t-3956f3a3c92e644463f9e38ea0314f50f3360a16542d7e4b547e924e40f2e0063</citedby><cites>FETCH-LOGICAL-a358t-3956f3a3c92e644463f9e38ea0314f50f3360a16542d7e4b547e924e40f2e0063</cites><orcidid>0000-0002-1485-6067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsphotonics.7b00410$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsphotonics.7b00410$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Fesharaki, Faezeh</creatorcontrib><creatorcontrib>Jooshesh, Afshin</creatorcontrib><creatorcontrib>Bahrami-Yekta, Vahid</creatorcontrib><creatorcontrib>Mahtab, Mahsa</creatorcontrib><creatorcontrib>Tiedje, Tom</creatorcontrib><creatorcontrib>Darcie, Thomas E</creatorcontrib><creatorcontrib>Gordon, Reuven</creatorcontrib><title>Plasmonic Antireflection Coating for Photoconductive Terahertz Generation</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>Plasmon-enhanced photoconductive antennas allow for improved performance, particularly in below-band-gap absorption devices using low-temperature-grown GaAs. Here we design the plasmonic nanostructures to act as antireflection coatings as well, achieving below 10% reflection at 1570 nm wavelength in an optimized device. Quantitative agreement is seen between experiment and theory. Terahertz emission field amplitudes demonstrate 18 times enhancement compared to that of a conventional terahertz photoconductive antenna on the same substrate.</description><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEFrwkAQhZfSQsX6D3rIH4id3ZlszFFCawWhHuw5rHG2RuKu7MZC--uboAdPPc2Dx_fm8YR4ljCVoOSLqeNp7zvvmjpO8y0ASbgTI4UIKYFS9zf6UUxiPACAhAy1ppFYrlsTjwOczF3XBLYt113jXVJ60zXuK7E-JOvhQe3d7tx735xsOJg9h-43WbDr9QA8iQdr2siT6x2Lz7fXTfmerj4Wy3K-Sg1msy7FItMWDdaFYk1EGm3BOGMDKMlmYBE1GKkzUrucaZtRzoUiJrCKATSOBV1y6-Bj7AtXp9AcTfipJFTDItXtItV1kR6DC9a71cGfg-tL_o_8AZB1aL8</recordid><startdate>20170621</startdate><enddate>20170621</enddate><creator>Fesharaki, Faezeh</creator><creator>Jooshesh, Afshin</creator><creator>Bahrami-Yekta, Vahid</creator><creator>Mahtab, Mahsa</creator><creator>Tiedje, Tom</creator><creator>Darcie, Thomas E</creator><creator>Gordon, Reuven</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1485-6067</orcidid></search><sort><creationdate>20170621</creationdate><title>Plasmonic Antireflection Coating for Photoconductive Terahertz Generation</title><author>Fesharaki, Faezeh ; Jooshesh, Afshin ; Bahrami-Yekta, Vahid ; Mahtab, Mahsa ; Tiedje, Tom ; Darcie, Thomas E ; Gordon, Reuven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a358t-3956f3a3c92e644463f9e38ea0314f50f3360a16542d7e4b547e924e40f2e0063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Fesharaki, Faezeh</creatorcontrib><creatorcontrib>Jooshesh, Afshin</creatorcontrib><creatorcontrib>Bahrami-Yekta, Vahid</creatorcontrib><creatorcontrib>Mahtab, Mahsa</creatorcontrib><creatorcontrib>Tiedje, Tom</creatorcontrib><creatorcontrib>Darcie, Thomas E</creatorcontrib><creatorcontrib>Gordon, Reuven</creatorcontrib><collection>CrossRef</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fesharaki, Faezeh</au><au>Jooshesh, Afshin</au><au>Bahrami-Yekta, Vahid</au><au>Mahtab, Mahsa</au><au>Tiedje, Tom</au><au>Darcie, Thomas E</au><au>Gordon, Reuven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic Antireflection Coating for Photoconductive Terahertz Generation</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2017-06-21</date><risdate>2017</risdate><volume>4</volume><issue>6</issue><spage>1350</spage><epage>1354</epage><pages>1350-1354</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>Plasmon-enhanced photoconductive antennas allow for improved performance, particularly in below-band-gap absorption devices using low-temperature-grown GaAs. Here we design the plasmonic nanostructures to act as antireflection coatings as well, achieving below 10% reflection at 1570 nm wavelength in an optimized device. Quantitative agreement is seen between experiment and theory. Terahertz emission field amplitudes demonstrate 18 times enhancement compared to that of a conventional terahertz photoconductive antenna on the same substrate.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.7b00410</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1485-6067</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2330-4022 |
ispartof | ACS photonics, 2017-06, Vol.4 (6), p.1350-1354 |
issn | 2330-4022 2330-4022 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsphotonics_7b00410 |
source | ACS Publications |
title | Plasmonic Antireflection Coating for Photoconductive Terahertz Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20Antireflection%20Coating%20for%20Photoconductive%20Terahertz%20Generation&rft.jtitle=ACS%20photonics&rft.au=Fesharaki,%20Faezeh&rft.date=2017-06-21&rft.volume=4&rft.issue=6&rft.spage=1350&rft.epage=1354&rft.pages=1350-1354&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.7b00410&rft_dat=%3Cacs_cross%3Ec443054651%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |