Size Tunable ZnO Nanoparticles To Enhance Electron Injection in Solution Processed QLEDs

Quantum dot (QD) light-emitting diodes (LEDs) are a promising candidate for high-efficiency, color-saturated displays. This work reports on the size effect of sol–gel synthesized ZnO nanoparticles (NPs) in which sizes of 2.9, 4.0, and 5.5 nm, were used as an electron transfer layer in QLEDs. The siz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS photonics 2016-02, Vol.3 (2), p.215-222
Hauptverfasser: Pan, Jiangyong, Chen, Jing, Huang, Qianqian, Khan, Qasim, Liu, Xiang, Tao, Zhi, Zhang, Zichen, Lei, Wei, Nathan, Arokia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 222
container_issue 2
container_start_page 215
container_title ACS photonics
container_volume 3
creator Pan, Jiangyong
Chen, Jing
Huang, Qianqian
Khan, Qasim
Liu, Xiang
Tao, Zhi
Zhang, Zichen
Lei, Wei
Nathan, Arokia
description Quantum dot (QD) light-emitting diodes (LEDs) are a promising candidate for high-efficiency, color-saturated displays. This work reports on the size effect of sol–gel synthesized ZnO nanoparticles (NPs) in which sizes of 2.9, 4.0, and 5.5 nm, were used as an electron transfer layer in QLEDs. The size of the NPs was estimated by transmission electron microscopy (TEM) and its effect on QLED performance was investigated by photoluminescence decay lifetime and electron mobility of ZnO NPs. It was found that as the size of the NP decreased from 5.5 to 2.9 nm, the conductivity increased, whereby the electron mobility was enhanced from 7.2 × 10–4 cm2/V·s to 4.8 × 10–3 cm2/V·s and electron decay lifetime increased from 5.11 to 6.68 ns. A comparison of NP size effects shows that the best performance is achieved with the 2.9 nm sized ZnO, which yields a turn on voltage of 3.3 V, a maximum current efficiency of 12.5 cd/A, power efficiency of 4.69 lm/W and external quantum efficiencies (EQE) of 4.2%. This is most likely due to the higher electron mobility in the smaller ZnO NPs, which facilitates electron transfer from the NPs to QDs, along with the slow exciton dissociation in the QD layer as a result of more favorable energy level alignment at the interface of smaller ZnO NPs and the adjacent emissive layer.
doi_str_mv 10.1021/acsphotonics.5b00267
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsphotonics_5b00267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c064108886</sourcerecordid><originalsourceid>FETCH-LOGICAL-a358t-47c98adf062a82fb8ca85e3e114540c401996b2094d4edc21c4a8d301d3658f83</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQQBdRsNT-Aw_7B1JnP7LdHKVGLQSrNIJ4CZvNhibE3bCbHPTXN9oeevI0D4Y3DA-hWwJLApTcKR36vRucbXRYxiUAFasLNKOMQcSB0sszvkaLEFoAIBAzIfgMfeyaH4Pz0aqyM_jTbvGLsq5Xfmh0ZwLOHU7tXlltcNoZPXhn8ca2EzUTNRbvXDf-8at32oRgKvyWpQ_hBl3VqgtmcZpz9P6Y5uvnKNs-bdb3WaRYLIeIr3QiVVWDoErSupRaydgwQwiPOWgOJElESSHhFTeVpkRzJSsGpGIilrVkc8SPd7V3IXhTF71vvpT_LggUv4GK80DFKdCkwVGbtkXrRm-nJ_9XDqh-bXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Size Tunable ZnO Nanoparticles To Enhance Electron Injection in Solution Processed QLEDs</title><source>ACS Publications</source><creator>Pan, Jiangyong ; Chen, Jing ; Huang, Qianqian ; Khan, Qasim ; Liu, Xiang ; Tao, Zhi ; Zhang, Zichen ; Lei, Wei ; Nathan, Arokia</creator><creatorcontrib>Pan, Jiangyong ; Chen, Jing ; Huang, Qianqian ; Khan, Qasim ; Liu, Xiang ; Tao, Zhi ; Zhang, Zichen ; Lei, Wei ; Nathan, Arokia</creatorcontrib><description>Quantum dot (QD) light-emitting diodes (LEDs) are a promising candidate for high-efficiency, color-saturated displays. This work reports on the size effect of sol–gel synthesized ZnO nanoparticles (NPs) in which sizes of 2.9, 4.0, and 5.5 nm, were used as an electron transfer layer in QLEDs. The size of the NPs was estimated by transmission electron microscopy (TEM) and its effect on QLED performance was investigated by photoluminescence decay lifetime and electron mobility of ZnO NPs. It was found that as the size of the NP decreased from 5.5 to 2.9 nm, the conductivity increased, whereby the electron mobility was enhanced from 7.2 × 10–4 cm2/V·s to 4.8 × 10–3 cm2/V·s and electron decay lifetime increased from 5.11 to 6.68 ns. A comparison of NP size effects shows that the best performance is achieved with the 2.9 nm sized ZnO, which yields a turn on voltage of 3.3 V, a maximum current efficiency of 12.5 cd/A, power efficiency of 4.69 lm/W and external quantum efficiencies (EQE) of 4.2%. This is most likely due to the higher electron mobility in the smaller ZnO NPs, which facilitates electron transfer from the NPs to QDs, along with the slow exciton dissociation in the QD layer as a result of more favorable energy level alignment at the interface of smaller ZnO NPs and the adjacent emissive layer.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.5b00267</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS photonics, 2016-02, Vol.3 (2), p.215-222</ispartof><rights>Copyright © 2016 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a358t-47c98adf062a82fb8ca85e3e114540c401996b2094d4edc21c4a8d301d3658f83</citedby><cites>FETCH-LOGICAL-a358t-47c98adf062a82fb8ca85e3e114540c401996b2094d4edc21c4a8d301d3658f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsphotonics.5b00267$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsphotonics.5b00267$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids></links><search><creatorcontrib>Pan, Jiangyong</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Huang, Qianqian</creatorcontrib><creatorcontrib>Khan, Qasim</creatorcontrib><creatorcontrib>Liu, Xiang</creatorcontrib><creatorcontrib>Tao, Zhi</creatorcontrib><creatorcontrib>Zhang, Zichen</creatorcontrib><creatorcontrib>Lei, Wei</creatorcontrib><creatorcontrib>Nathan, Arokia</creatorcontrib><title>Size Tunable ZnO Nanoparticles To Enhance Electron Injection in Solution Processed QLEDs</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>Quantum dot (QD) light-emitting diodes (LEDs) are a promising candidate for high-efficiency, color-saturated displays. This work reports on the size effect of sol–gel synthesized ZnO nanoparticles (NPs) in which sizes of 2.9, 4.0, and 5.5 nm, were used as an electron transfer layer in QLEDs. The size of the NPs was estimated by transmission electron microscopy (TEM) and its effect on QLED performance was investigated by photoluminescence decay lifetime and electron mobility of ZnO NPs. It was found that as the size of the NP decreased from 5.5 to 2.9 nm, the conductivity increased, whereby the electron mobility was enhanced from 7.2 × 10–4 cm2/V·s to 4.8 × 10–3 cm2/V·s and electron decay lifetime increased from 5.11 to 6.68 ns. A comparison of NP size effects shows that the best performance is achieved with the 2.9 nm sized ZnO, which yields a turn on voltage of 3.3 V, a maximum current efficiency of 12.5 cd/A, power efficiency of 4.69 lm/W and external quantum efficiencies (EQE) of 4.2%. This is most likely due to the higher electron mobility in the smaller ZnO NPs, which facilitates electron transfer from the NPs to QDs, along with the slow exciton dissociation in the QD layer as a result of more favorable energy level alignment at the interface of smaller ZnO NPs and the adjacent emissive layer.</description><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQQBdRsNT-Aw_7B1JnP7LdHKVGLQSrNIJ4CZvNhibE3bCbHPTXN9oeevI0D4Y3DA-hWwJLApTcKR36vRucbXRYxiUAFasLNKOMQcSB0sszvkaLEFoAIBAzIfgMfeyaH4Pz0aqyM_jTbvGLsq5Xfmh0ZwLOHU7tXlltcNoZPXhn8ca2EzUTNRbvXDf-8at32oRgKvyWpQ_hBl3VqgtmcZpz9P6Y5uvnKNs-bdb3WaRYLIeIr3QiVVWDoErSupRaydgwQwiPOWgOJElESSHhFTeVpkRzJSsGpGIilrVkc8SPd7V3IXhTF71vvpT_LggUv4GK80DFKdCkwVGbtkXrRm-nJ_9XDqh-bXA</recordid><startdate>20160217</startdate><enddate>20160217</enddate><creator>Pan, Jiangyong</creator><creator>Chen, Jing</creator><creator>Huang, Qianqian</creator><creator>Khan, Qasim</creator><creator>Liu, Xiang</creator><creator>Tao, Zhi</creator><creator>Zhang, Zichen</creator><creator>Lei, Wei</creator><creator>Nathan, Arokia</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160217</creationdate><title>Size Tunable ZnO Nanoparticles To Enhance Electron Injection in Solution Processed QLEDs</title><author>Pan, Jiangyong ; Chen, Jing ; Huang, Qianqian ; Khan, Qasim ; Liu, Xiang ; Tao, Zhi ; Zhang, Zichen ; Lei, Wei ; Nathan, Arokia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a358t-47c98adf062a82fb8ca85e3e114540c401996b2094d4edc21c4a8d301d3658f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Pan, Jiangyong</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><creatorcontrib>Huang, Qianqian</creatorcontrib><creatorcontrib>Khan, Qasim</creatorcontrib><creatorcontrib>Liu, Xiang</creatorcontrib><creatorcontrib>Tao, Zhi</creatorcontrib><creatorcontrib>Zhang, Zichen</creatorcontrib><creatorcontrib>Lei, Wei</creatorcontrib><creatorcontrib>Nathan, Arokia</creatorcontrib><collection>CrossRef</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Jiangyong</au><au>Chen, Jing</au><au>Huang, Qianqian</au><au>Khan, Qasim</au><au>Liu, Xiang</au><au>Tao, Zhi</au><au>Zhang, Zichen</au><au>Lei, Wei</au><au>Nathan, Arokia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size Tunable ZnO Nanoparticles To Enhance Electron Injection in Solution Processed QLEDs</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2016-02-17</date><risdate>2016</risdate><volume>3</volume><issue>2</issue><spage>215</spage><epage>222</epage><pages>215-222</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>Quantum dot (QD) light-emitting diodes (LEDs) are a promising candidate for high-efficiency, color-saturated displays. This work reports on the size effect of sol–gel synthesized ZnO nanoparticles (NPs) in which sizes of 2.9, 4.0, and 5.5 nm, were used as an electron transfer layer in QLEDs. The size of the NPs was estimated by transmission electron microscopy (TEM) and its effect on QLED performance was investigated by photoluminescence decay lifetime and electron mobility of ZnO NPs. It was found that as the size of the NP decreased from 5.5 to 2.9 nm, the conductivity increased, whereby the electron mobility was enhanced from 7.2 × 10–4 cm2/V·s to 4.8 × 10–3 cm2/V·s and electron decay lifetime increased from 5.11 to 6.68 ns. A comparison of NP size effects shows that the best performance is achieved with the 2.9 nm sized ZnO, which yields a turn on voltage of 3.3 V, a maximum current efficiency of 12.5 cd/A, power efficiency of 4.69 lm/W and external quantum efficiencies (EQE) of 4.2%. This is most likely due to the higher electron mobility in the smaller ZnO NPs, which facilitates electron transfer from the NPs to QDs, along with the slow exciton dissociation in the QD layer as a result of more favorable energy level alignment at the interface of smaller ZnO NPs and the adjacent emissive layer.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.5b00267</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2330-4022
ispartof ACS photonics, 2016-02, Vol.3 (2), p.215-222
issn 2330-4022
2330-4022
language eng
recordid cdi_crossref_primary_10_1021_acsphotonics_5b00267
source ACS Publications
title Size Tunable ZnO Nanoparticles To Enhance Electron Injection in Solution Processed QLEDs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A25%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20Tunable%20ZnO%20Nanoparticles%20To%20Enhance%20Electron%20Injection%20in%20Solution%20Processed%20QLEDs&rft.jtitle=ACS%20photonics&rft.au=Pan,%20Jiangyong&rft.date=2016-02-17&rft.volume=3&rft.issue=2&rft.spage=215&rft.epage=222&rft.pages=215-222&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.5b00267&rft_dat=%3Cacs_cross%3Ec064108886%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true