Direct Plasmonic Excitation of the Hybridized Surface States in Metal Nanoparticles

Plasmon-driven chemical reactions are a subject that is currently capturing the attention of the research community and generates a fair amount of arguments about their origin. Taking into account that the lifetime of excited hot carriers in metals is very short, some mechanism is required to store...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS photonics 2021-07, Vol.8 (7), p.2041-2049
Hauptverfasser: Khurgin, Jacob B, Petrov, Alexander, Eich, Manfred, Uskov, Alexander V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2049
container_issue 7
container_start_page 2041
container_title ACS photonics
container_volume 8
creator Khurgin, Jacob B
Petrov, Alexander
Eich, Manfred
Uskov, Alexander V
description Plasmon-driven chemical reactions are a subject that is currently capturing the attention of the research community and generates a fair amount of arguments about their origin. Taking into account that the lifetime of excited hot carriers in metals is very short, some mechanism is required to store carriers long enough and in sites that allow chemical reactions with the environment. One established mechanism is the injection of charges into either the valence or conduction band of a semiconductor, followed by a chemical reaction at the semiconductor surface. Here, we consider a somewhat less-explored pathway by which plasmon decay can cause a chemical reaction: the direct excitation of hybridized surface states by plasmons. Using a simple model, we evaluate theoretically the rate of direct excitation and find that it can be comparable and often exceed the rate of indirect excitation of surface states. Our findings correspond to prior experimental results. We also identify the conditions under which one can enhance the direct excitation efficiency and, thus, bring plasmon-driven photochemistry closer to practical applications.
doi_str_mv 10.1021/acsphotonics.1c00167
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsphotonics_1c00167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b798249169</sourcerecordid><originalsourceid>FETCH-LOGICAL-a292t-fc94819aff805b959e1133e8e3800754dd120e1643c1c344c878a437ad1a078d3</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoSHNH3ShH3A6etiWlyVNm0L6ALdrM5ElouBYQVKg6dfXIVlk1dUMzD2X4RByz2DKgLMH1HG39sn3Tscp0wCsKK_IiAsBmQTOry_2WzKJcQNDBnJRFHJE6icXjE70s8O4PXbQ-Y92CZPzPfWWprWhi8MquNb9mpbW-2BRG1oPCROp6-mbSdjRd-z9DkNyujPxjtxY7KKZnOeYfD_Pv2aLbPnx8jp7XGbIK54yqyupWIXWKshXVV4ZxoQwyggFUOaybRkHwwopNNNCSq1KhVKU2DKEUrViTOSpVwcfYzC22QW3xXBoGDRHN82lm-bsZsDghA3XZuP3oR-e_B_5A6HGa-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Direct Plasmonic Excitation of the Hybridized Surface States in Metal Nanoparticles</title><source>ACS Publications</source><creator>Khurgin, Jacob B ; Petrov, Alexander ; Eich, Manfred ; Uskov, Alexander V</creator><creatorcontrib>Khurgin, Jacob B ; Petrov, Alexander ; Eich, Manfred ; Uskov, Alexander V</creatorcontrib><description>Plasmon-driven chemical reactions are a subject that is currently capturing the attention of the research community and generates a fair amount of arguments about their origin. Taking into account that the lifetime of excited hot carriers in metals is very short, some mechanism is required to store carriers long enough and in sites that allow chemical reactions with the environment. One established mechanism is the injection of charges into either the valence or conduction band of a semiconductor, followed by a chemical reaction at the semiconductor surface. Here, we consider a somewhat less-explored pathway by which plasmon decay can cause a chemical reaction: the direct excitation of hybridized surface states by plasmons. Using a simple model, we evaluate theoretically the rate of direct excitation and find that it can be comparable and often exceed the rate of indirect excitation of surface states. Our findings correspond to prior experimental results. We also identify the conditions under which one can enhance the direct excitation efficiency and, thus, bring plasmon-driven photochemistry closer to practical applications.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.1c00167</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS photonics, 2021-07, Vol.8 (7), p.2041-2049</ispartof><rights>2021 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a292t-fc94819aff805b959e1133e8e3800754dd120e1643c1c344c878a437ad1a078d3</citedby><cites>FETCH-LOGICAL-a292t-fc94819aff805b959e1133e8e3800754dd120e1643c1c344c878a437ad1a078d3</cites><orcidid>0000-0003-0725-8736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsphotonics.1c00167$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsphotonics.1c00167$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Khurgin, Jacob B</creatorcontrib><creatorcontrib>Petrov, Alexander</creatorcontrib><creatorcontrib>Eich, Manfred</creatorcontrib><creatorcontrib>Uskov, Alexander V</creatorcontrib><title>Direct Plasmonic Excitation of the Hybridized Surface States in Metal Nanoparticles</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>Plasmon-driven chemical reactions are a subject that is currently capturing the attention of the research community and generates a fair amount of arguments about their origin. Taking into account that the lifetime of excited hot carriers in metals is very short, some mechanism is required to store carriers long enough and in sites that allow chemical reactions with the environment. One established mechanism is the injection of charges into either the valence or conduction band of a semiconductor, followed by a chemical reaction at the semiconductor surface. Here, we consider a somewhat less-explored pathway by which plasmon decay can cause a chemical reaction: the direct excitation of hybridized surface states by plasmons. Using a simple model, we evaluate theoretically the rate of direct excitation and find that it can be comparable and often exceed the rate of indirect excitation of surface states. Our findings correspond to prior experimental results. We also identify the conditions under which one can enhance the direct excitation efficiency and, thus, bring plasmon-driven photochemistry closer to practical applications.</description><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoSHNH3ShH3A6etiWlyVNm0L6ALdrM5ElouBYQVKg6dfXIVlk1dUMzD2X4RByz2DKgLMH1HG39sn3Tscp0wCsKK_IiAsBmQTOry_2WzKJcQNDBnJRFHJE6icXjE70s8O4PXbQ-Y92CZPzPfWWprWhi8MquNb9mpbW-2BRG1oPCROp6-mbSdjRd-z9DkNyujPxjtxY7KKZnOeYfD_Pv2aLbPnx8jp7XGbIK54yqyupWIXWKshXVV4ZxoQwyggFUOaybRkHwwopNNNCSq1KhVKU2DKEUrViTOSpVwcfYzC22QW3xXBoGDRHN82lm-bsZsDghA3XZuP3oR-e_B_5A6HGa-A</recordid><startdate>20210721</startdate><enddate>20210721</enddate><creator>Khurgin, Jacob B</creator><creator>Petrov, Alexander</creator><creator>Eich, Manfred</creator><creator>Uskov, Alexander V</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0725-8736</orcidid></search><sort><creationdate>20210721</creationdate><title>Direct Plasmonic Excitation of the Hybridized Surface States in Metal Nanoparticles</title><author>Khurgin, Jacob B ; Petrov, Alexander ; Eich, Manfred ; Uskov, Alexander V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a292t-fc94819aff805b959e1133e8e3800754dd120e1643c1c344c878a437ad1a078d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Khurgin, Jacob B</creatorcontrib><creatorcontrib>Petrov, Alexander</creatorcontrib><creatorcontrib>Eich, Manfred</creatorcontrib><creatorcontrib>Uskov, Alexander V</creatorcontrib><collection>CrossRef</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khurgin, Jacob B</au><au>Petrov, Alexander</au><au>Eich, Manfred</au><au>Uskov, Alexander V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct Plasmonic Excitation of the Hybridized Surface States in Metal Nanoparticles</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2021-07-21</date><risdate>2021</risdate><volume>8</volume><issue>7</issue><spage>2041</spage><epage>2049</epage><pages>2041-2049</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>Plasmon-driven chemical reactions are a subject that is currently capturing the attention of the research community and generates a fair amount of arguments about their origin. Taking into account that the lifetime of excited hot carriers in metals is very short, some mechanism is required to store carriers long enough and in sites that allow chemical reactions with the environment. One established mechanism is the injection of charges into either the valence or conduction band of a semiconductor, followed by a chemical reaction at the semiconductor surface. Here, we consider a somewhat less-explored pathway by which plasmon decay can cause a chemical reaction: the direct excitation of hybridized surface states by plasmons. Using a simple model, we evaluate theoretically the rate of direct excitation and find that it can be comparable and often exceed the rate of indirect excitation of surface states. Our findings correspond to prior experimental results. We also identify the conditions under which one can enhance the direct excitation efficiency and, thus, bring plasmon-driven photochemistry closer to practical applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.1c00167</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0725-8736</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2330-4022
ispartof ACS photonics, 2021-07, Vol.8 (7), p.2041-2049
issn 2330-4022
2330-4022
language eng
recordid cdi_crossref_primary_10_1021_acsphotonics_1c00167
source ACS Publications
title Direct Plasmonic Excitation of the Hybridized Surface States in Metal Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A01%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20Plasmonic%20Excitation%20of%20the%20Hybridized%20Surface%20States%20in%20Metal%20Nanoparticles&rft.jtitle=ACS%20photonics&rft.au=Khurgin,%20Jacob%20B&rft.date=2021-07-21&rft.volume=8&rft.issue=7&rft.spage=2041&rft.epage=2049&rft.pages=2041-2049&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.1c00167&rft_dat=%3Cacs_cross%3Eb798249169%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true