Magnetic, Pseudocapacitive, and H 2 O 2 -Electrosensing Properties of Self-Assembled Superparamagnetic Co 0.3 Zn 0.7 Fe 2 O 4 with Enhanced Saturation Magnetization
The present work explores the structural, microstructural, optical, magnetic, and hyperfine properties of Co Zn Fe O microspheres, which have been synthesized by a novel template-free solvothermal method. Powder X-ray diffraction, electron microscopic, and Fourier transform infrared spectroscopic te...
Gespeichert in:
Veröffentlicht in: | ACS omega 2019-07, Vol.4 (7), p.12632-12646 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12646 |
---|---|
container_issue | 7 |
container_start_page | 12632 |
container_title | ACS omega |
container_volume | 4 |
creator | Mondal, Rituparna Sarkar, Koyel Dey, Subhrajyoti Majumdar, Dipanwita Bhattacharya, Swapan Kumar Sen, Pintu Kumar, Sanjay |
description | The present work explores the structural, microstructural, optical, magnetic, and hyperfine properties of Co
Zn
Fe
O
microspheres, which have been synthesized by a novel template-free solvothermal method. Powder X-ray diffraction, electron microscopic, and Fourier transform infrared spectroscopic techniques were employed to thoroughly investigate the structural and microstructural properties of Co
Zn
Fe
O
microspheres. The results revealed that the microspheres (average diameter ∼121 nm) have been formed by self-assembly of nanoparticles with an average particle size of ∼12 nm. UV-vis diffuse reflectance spectroscopic and photoluminescence studies have been performed to study the optical properties of the sample. The studies indicate that Co
Zn
Fe
O
microspheres exhibit a lower band gap value and enhanced PL intensity compared to their nanoparticle counterpart. The outcomes of dc magnetic measurement and Mössbauer spectroscopic study confirm that the sample is ferrimagnetic in nature. The values of saturation magnetization are 76 and 116 emu g
at 300 and 5 K, respectively, which are substantially larger than its nanosized counterpart. The infield Mössbauer spectroscopic study and Rietveld analysis of the PXRD pattern reveal that Fe
ions have migrated from [B] to (A) sites resulting in the cation distribution: (Zn
Fe
)
[Zn
Co
Fe
]
O
. Comparison of electrochemical performance of the Co
Zn
Fe
O
microspheres to that of the Co
Zn
Fe
O
nanoparticles reveals that the former displays greater specific capacitance (149.13 F g
) than the latter (80.06 F g
) due to its self-assembled porous structure. Moreover, it was found that Co
Zn
Fe
O
microspheres possess a better electrochemical response toward H
O
sensing than Co
Zn
Fe
O
nanoparticles in a wide linear range. |
doi_str_mv | 10.1021/acsomega.9b01362 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsomega_9b01362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31460384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1114-f0660560a9b42d19d0e15c78ee51486d5b7c83be5f81f41257200219a8eb54563</originalsourceid><addsrcrecordid>eNpNkN1Kw0AQhRdRrNTeeyX7AE3d_2wuS2mtUGmheuNN2GwmbSR_ZBNFn8cHNW1T8WI4MwznMPMhdEfJhBJGH4x1ZQ47MwkiQrliF-iGCZ94lAt--a8foJFz74QQqjTTTF2jAadCEa7FDfp5NrsCmtSO8cZBG5fWVMamTfoBY2yKGC8xw-uuvHkGtqlLB4VLix3e1GUFdZOCw2WCt5Al3tQ5yKMMYrxtu11lapP36XhWYjLh-K3oxMcLOKYK_Jk2ezwv9qawB5tp2to0aVng_qzv43SLrhKTORj1OkSvi_nLbOmt1o9Ps-nKs5RS4SVEKSIVMUEkWEyDmACV1tcAkgqtYhn5VvMIZKJpIiiTPiMdyMBoiKSQig8ROeXa7k9XQxJWdZqb-iukJDwwD8_Mw555Z7k_Wao2yiH-M5wJ81_9JX0y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Magnetic, Pseudocapacitive, and H 2 O 2 -Electrosensing Properties of Self-Assembled Superparamagnetic Co 0.3 Zn 0.7 Fe 2 O 4 with Enhanced Saturation Magnetization</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>American Chemical Society (ACS) Open Access</source><source>PubMed Central</source><creator>Mondal, Rituparna ; Sarkar, Koyel ; Dey, Subhrajyoti ; Majumdar, Dipanwita ; Bhattacharya, Swapan Kumar ; Sen, Pintu ; Kumar, Sanjay</creator><creatorcontrib>Mondal, Rituparna ; Sarkar, Koyel ; Dey, Subhrajyoti ; Majumdar, Dipanwita ; Bhattacharya, Swapan Kumar ; Sen, Pintu ; Kumar, Sanjay</creatorcontrib><description>The present work explores the structural, microstructural, optical, magnetic, and hyperfine properties of Co
Zn
Fe
O
microspheres, which have been synthesized by a novel template-free solvothermal method. Powder X-ray diffraction, electron microscopic, and Fourier transform infrared spectroscopic techniques were employed to thoroughly investigate the structural and microstructural properties of Co
Zn
Fe
O
microspheres. The results revealed that the microspheres (average diameter ∼121 nm) have been formed by self-assembly of nanoparticles with an average particle size of ∼12 nm. UV-vis diffuse reflectance spectroscopic and photoluminescence studies have been performed to study the optical properties of the sample. The studies indicate that Co
Zn
Fe
O
microspheres exhibit a lower band gap value and enhanced PL intensity compared to their nanoparticle counterpart. The outcomes of dc magnetic measurement and Mössbauer spectroscopic study confirm that the sample is ferrimagnetic in nature. The values of saturation magnetization are 76 and 116 emu g
at 300 and 5 K, respectively, which are substantially larger than its nanosized counterpart. The infield Mössbauer spectroscopic study and Rietveld analysis of the PXRD pattern reveal that Fe
ions have migrated from [B] to (A) sites resulting in the cation distribution: (Zn
Fe
)
[Zn
Co
Fe
]
O
. Comparison of electrochemical performance of the Co
Zn
Fe
O
microspheres to that of the Co
Zn
Fe
O
nanoparticles reveals that the former displays greater specific capacitance (149.13 F g
) than the latter (80.06 F g
) due to its self-assembled porous structure. Moreover, it was found that Co
Zn
Fe
O
microspheres possess a better electrochemical response toward H
O
sensing than Co
Zn
Fe
O
nanoparticles in a wide linear range.</description><identifier>ISSN: 2470-1343</identifier><identifier>EISSN: 2470-1343</identifier><identifier>DOI: 10.1021/acsomega.9b01362</identifier><identifier>PMID: 31460384</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS omega, 2019-07, Vol.4 (7), p.12632-12646</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1114-f0660560a9b42d19d0e15c78ee51486d5b7c83be5f81f41257200219a8eb54563</citedby><cites>FETCH-LOGICAL-c1114-f0660560a9b42d19d0e15c78ee51486d5b7c83be5f81f41257200219a8eb54563</cites><orcidid>0000-0002-1218-1860 ; 0000-0002-0584-0901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31460384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mondal, Rituparna</creatorcontrib><creatorcontrib>Sarkar, Koyel</creatorcontrib><creatorcontrib>Dey, Subhrajyoti</creatorcontrib><creatorcontrib>Majumdar, Dipanwita</creatorcontrib><creatorcontrib>Bhattacharya, Swapan Kumar</creatorcontrib><creatorcontrib>Sen, Pintu</creatorcontrib><creatorcontrib>Kumar, Sanjay</creatorcontrib><title>Magnetic, Pseudocapacitive, and H 2 O 2 -Electrosensing Properties of Self-Assembled Superparamagnetic Co 0.3 Zn 0.7 Fe 2 O 4 with Enhanced Saturation Magnetization</title><title>ACS omega</title><addtitle>ACS Omega</addtitle><description>The present work explores the structural, microstructural, optical, magnetic, and hyperfine properties of Co
Zn
Fe
O
microspheres, which have been synthesized by a novel template-free solvothermal method. Powder X-ray diffraction, electron microscopic, and Fourier transform infrared spectroscopic techniques were employed to thoroughly investigate the structural and microstructural properties of Co
Zn
Fe
O
microspheres. The results revealed that the microspheres (average diameter ∼121 nm) have been formed by self-assembly of nanoparticles with an average particle size of ∼12 nm. UV-vis diffuse reflectance spectroscopic and photoluminescence studies have been performed to study the optical properties of the sample. The studies indicate that Co
Zn
Fe
O
microspheres exhibit a lower band gap value and enhanced PL intensity compared to their nanoparticle counterpart. The outcomes of dc magnetic measurement and Mössbauer spectroscopic study confirm that the sample is ferrimagnetic in nature. The values of saturation magnetization are 76 and 116 emu g
at 300 and 5 K, respectively, which are substantially larger than its nanosized counterpart. The infield Mössbauer spectroscopic study and Rietveld analysis of the PXRD pattern reveal that Fe
ions have migrated from [B] to (A) sites resulting in the cation distribution: (Zn
Fe
)
[Zn
Co
Fe
]
O
. Comparison of electrochemical performance of the Co
Zn
Fe
O
microspheres to that of the Co
Zn
Fe
O
nanoparticles reveals that the former displays greater specific capacitance (149.13 F g
) than the latter (80.06 F g
) due to its self-assembled porous structure. Moreover, it was found that Co
Zn
Fe
O
microspheres possess a better electrochemical response toward H
O
sensing than Co
Zn
Fe
O
nanoparticles in a wide linear range.</description><issn>2470-1343</issn><issn>2470-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkN1Kw0AQhRdRrNTeeyX7AE3d_2wuS2mtUGmheuNN2GwmbSR_ZBNFn8cHNW1T8WI4MwznMPMhdEfJhBJGH4x1ZQ47MwkiQrliF-iGCZ94lAt--a8foJFz74QQqjTTTF2jAadCEa7FDfp5NrsCmtSO8cZBG5fWVMamTfoBY2yKGC8xw-uuvHkGtqlLB4VLix3e1GUFdZOCw2WCt5Al3tQ5yKMMYrxtu11lapP36XhWYjLh-K3oxMcLOKYK_Jk2ezwv9qawB5tp2to0aVng_qzv43SLrhKTORj1OkSvi_nLbOmt1o9Ps-nKs5RS4SVEKSIVMUEkWEyDmACV1tcAkgqtYhn5VvMIZKJpIiiTPiMdyMBoiKSQig8ROeXa7k9XQxJWdZqb-iukJDwwD8_Mw555Z7k_Wao2yiH-M5wJ81_9JX0y</recordid><startdate>20190731</startdate><enddate>20190731</enddate><creator>Mondal, Rituparna</creator><creator>Sarkar, Koyel</creator><creator>Dey, Subhrajyoti</creator><creator>Majumdar, Dipanwita</creator><creator>Bhattacharya, Swapan Kumar</creator><creator>Sen, Pintu</creator><creator>Kumar, Sanjay</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1218-1860</orcidid><orcidid>https://orcid.org/0000-0002-0584-0901</orcidid></search><sort><creationdate>20190731</creationdate><title>Magnetic, Pseudocapacitive, and H 2 O 2 -Electrosensing Properties of Self-Assembled Superparamagnetic Co 0.3 Zn 0.7 Fe 2 O 4 with Enhanced Saturation Magnetization</title><author>Mondal, Rituparna ; Sarkar, Koyel ; Dey, Subhrajyoti ; Majumdar, Dipanwita ; Bhattacharya, Swapan Kumar ; Sen, Pintu ; Kumar, Sanjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1114-f0660560a9b42d19d0e15c78ee51486d5b7c83be5f81f41257200219a8eb54563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mondal, Rituparna</creatorcontrib><creatorcontrib>Sarkar, Koyel</creatorcontrib><creatorcontrib>Dey, Subhrajyoti</creatorcontrib><creatorcontrib>Majumdar, Dipanwita</creatorcontrib><creatorcontrib>Bhattacharya, Swapan Kumar</creatorcontrib><creatorcontrib>Sen, Pintu</creatorcontrib><creatorcontrib>Kumar, Sanjay</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS omega</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mondal, Rituparna</au><au>Sarkar, Koyel</au><au>Dey, Subhrajyoti</au><au>Majumdar, Dipanwita</au><au>Bhattacharya, Swapan Kumar</au><au>Sen, Pintu</au><au>Kumar, Sanjay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic, Pseudocapacitive, and H 2 O 2 -Electrosensing Properties of Self-Assembled Superparamagnetic Co 0.3 Zn 0.7 Fe 2 O 4 with Enhanced Saturation Magnetization</atitle><jtitle>ACS omega</jtitle><addtitle>ACS Omega</addtitle><date>2019-07-31</date><risdate>2019</risdate><volume>4</volume><issue>7</issue><spage>12632</spage><epage>12646</epage><pages>12632-12646</pages><issn>2470-1343</issn><eissn>2470-1343</eissn><abstract>The present work explores the structural, microstructural, optical, magnetic, and hyperfine properties of Co
Zn
Fe
O
microspheres, which have been synthesized by a novel template-free solvothermal method. Powder X-ray diffraction, electron microscopic, and Fourier transform infrared spectroscopic techniques were employed to thoroughly investigate the structural and microstructural properties of Co
Zn
Fe
O
microspheres. The results revealed that the microspheres (average diameter ∼121 nm) have been formed by self-assembly of nanoparticles with an average particle size of ∼12 nm. UV-vis diffuse reflectance spectroscopic and photoluminescence studies have been performed to study the optical properties of the sample. The studies indicate that Co
Zn
Fe
O
microspheres exhibit a lower band gap value and enhanced PL intensity compared to their nanoparticle counterpart. The outcomes of dc magnetic measurement and Mössbauer spectroscopic study confirm that the sample is ferrimagnetic in nature. The values of saturation magnetization are 76 and 116 emu g
at 300 and 5 K, respectively, which are substantially larger than its nanosized counterpart. The infield Mössbauer spectroscopic study and Rietveld analysis of the PXRD pattern reveal that Fe
ions have migrated from [B] to (A) sites resulting in the cation distribution: (Zn
Fe
)
[Zn
Co
Fe
]
O
. Comparison of electrochemical performance of the Co
Zn
Fe
O
microspheres to that of the Co
Zn
Fe
O
nanoparticles reveals that the former displays greater specific capacitance (149.13 F g
) than the latter (80.06 F g
) due to its self-assembled porous structure. Moreover, it was found that Co
Zn
Fe
O
microspheres possess a better electrochemical response toward H
O
sensing than Co
Zn
Fe
O
nanoparticles in a wide linear range.</abstract><cop>United States</cop><pmid>31460384</pmid><doi>10.1021/acsomega.9b01362</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1218-1860</orcidid><orcidid>https://orcid.org/0000-0002-0584-0901</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-1343 |
ispartof | ACS omega, 2019-07, Vol.4 (7), p.12632-12646 |
issn | 2470-1343 2470-1343 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsomega_9b01362 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; American Chemical Society (ACS) Open Access; PubMed Central |
title | Magnetic, Pseudocapacitive, and H 2 O 2 -Electrosensing Properties of Self-Assembled Superparamagnetic Co 0.3 Zn 0.7 Fe 2 O 4 with Enhanced Saturation Magnetization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic,%20Pseudocapacitive,%20and%20H%202%20O%202%20-Electrosensing%20Properties%20of%20Self-Assembled%20Superparamagnetic%20Co%200.3%20Zn%200.7%20Fe%202%20O%204%20with%20Enhanced%20Saturation%20Magnetization&rft.jtitle=ACS%20omega&rft.au=Mondal,%20Rituparna&rft.date=2019-07-31&rft.volume=4&rft.issue=7&rft.spage=12632&rft.epage=12646&rft.pages=12632-12646&rft.issn=2470-1343&rft.eissn=2470-1343&rft_id=info:doi/10.1021/acsomega.9b01362&rft_dat=%3Cpubmed_cross%3E31460384%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31460384&rfr_iscdi=true |