Machine Learning Models for Efficient Property Prediction of ABX 3 Materials: A High-Throughput Approach

Recently, ABX materials have garnered significant attention due to their diverse applications in photovoltaics, catalysis, and optoelectronics as well as their remarkable efficiency in energy conversion. However, progress has been somewhat slow due to the high expenses of the experiment or the time-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2024-12, Vol.9 (48), p.47519-47531
Hauptverfasser: Touati, Soundous, Benghia, Ali, Hebboul, Zoulikha, Lefkaier, Ibn Khaldoun, Kanoun, Mohammed Benali, Goumri-Said, Souraya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47531
container_issue 48
container_start_page 47519
container_title ACS omega
container_volume 9
creator Touati, Soundous
Benghia, Ali
Hebboul, Zoulikha
Lefkaier, Ibn Khaldoun
Kanoun, Mohammed Benali
Goumri-Said, Souraya
description Recently, ABX materials have garnered significant attention due to their diverse applications in photovoltaics, catalysis, and optoelectronics as well as their remarkable efficiency in energy conversion. However, progress has been somewhat slow due to the high expenses of the experiment or the time-consuming density functional theory (DFT) calculation. In this study, we utilized the extreme gradient boosting (XGBoost) algorithm to facilitate the discovery and characterization of ABX compounds based on vast data sets generated by DFT calculations. While the XGBoost algorithm provides a powerful tool for accelerating the discovery of ABX compounds, it is crucial to acknowledge that different DFT approximation levels can significantly impact the predicted band gaps, potentially introducing discrepancies when compared with experimental values. In the first step, we predict the space group of 13947 oxides and halides using the Open Quantum Materials Database and elemental features. Our analysis yields classification accuracies ranging from 82.39% to 99.14% across these materials. Following this, XGBoost regression algorithms are employed to interrogate the data set, enabling predictions of volume (achieving an optimal accuracy of 98.41%, with a mean absolute error (MAE) of 2.395 Å and a root-mean-square error (RMSE) of 4.416 Å ), formation energy (an optimal accuracy of 97.36%, with an MAE of 0.075 eV/atom and an RMSE of 0.132 eV/atom), and band gap energy (an optimal accuracy of 87.00%, an MAE of 0.391 eV, and an RMSE of 0.574 eV). Finally, these prediction models are employed to identify the possible space groups for each of the 1252 new ABX formulas. Then, we predict the volume, the formation energy, and the band gap energy for each candidate space group. Through these predictive models, machine learning accelerates the exploration of new materials with enhanced performance and functionality.
doi_str_mv 10.1021/acsomega.4c06139
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsomega_4c06139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39651106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c646-c2ae2dffcd41a244a71ce8efbd77e1fb699e16a224524863b45185a45c16b433</originalsourceid><addsrcrecordid>eNpNkLFOwzAURS0EolXpzoT8Ayl-tuMkbKUqFKkVSHRgixznOTFq48hJh_49QW0R07vDO_dKh5B7YDNgHB616fweKz2ThikQ2RUZc5mwCIQU1__yiEy77psxBirlKVe3ZCQyFQMwNSb1RpvaNUjXqEPjmopufIm7jlof6NJaZxw2Pf0IvsXQH4eApTO98w31ls6fv6igG91jcHrXPdE5XbmqjrZ18Ieqbg89nbdt8MPGHbmxwwtOz3dCPl-W28UqWr-_vi3m68goqSLDNfLSWlNK0FxKnYDBFG1RJgmCLVSWISjNuYy5TJUoZAxprGVsQBVSiAlhp1YTfNcFtHkb3F6HYw4s_7WWX6zlZ2sD8nBC2kOxx_IPuDgSPxwXal8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine Learning Models for Efficient Property Prediction of ABX 3 Materials: A High-Throughput Approach</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>American Chemical Society (ACS) Open Access</source><source>PubMed Central</source><creator>Touati, Soundous ; Benghia, Ali ; Hebboul, Zoulikha ; Lefkaier, Ibn Khaldoun ; Kanoun, Mohammed Benali ; Goumri-Said, Souraya</creator><creatorcontrib>Touati, Soundous ; Benghia, Ali ; Hebboul, Zoulikha ; Lefkaier, Ibn Khaldoun ; Kanoun, Mohammed Benali ; Goumri-Said, Souraya</creatorcontrib><description>Recently, ABX materials have garnered significant attention due to their diverse applications in photovoltaics, catalysis, and optoelectronics as well as their remarkable efficiency in energy conversion. However, progress has been somewhat slow due to the high expenses of the experiment or the time-consuming density functional theory (DFT) calculation. In this study, we utilized the extreme gradient boosting (XGBoost) algorithm to facilitate the discovery and characterization of ABX compounds based on vast data sets generated by DFT calculations. While the XGBoost algorithm provides a powerful tool for accelerating the discovery of ABX compounds, it is crucial to acknowledge that different DFT approximation levels can significantly impact the predicted band gaps, potentially introducing discrepancies when compared with experimental values. In the first step, we predict the space group of 13947 oxides and halides using the Open Quantum Materials Database and elemental features. Our analysis yields classification accuracies ranging from 82.39% to 99.14% across these materials. Following this, XGBoost regression algorithms are employed to interrogate the data set, enabling predictions of volume (achieving an optimal accuracy of 98.41%, with a mean absolute error (MAE) of 2.395 Å and a root-mean-square error (RMSE) of 4.416 Å ), formation energy (an optimal accuracy of 97.36%, with an MAE of 0.075 eV/atom and an RMSE of 0.132 eV/atom), and band gap energy (an optimal accuracy of 87.00%, an MAE of 0.391 eV, and an RMSE of 0.574 eV). Finally, these prediction models are employed to identify the possible space groups for each of the 1252 new ABX formulas. Then, we predict the volume, the formation energy, and the band gap energy for each candidate space group. Through these predictive models, machine learning accelerates the exploration of new materials with enhanced performance and functionality.</description><identifier>ISSN: 2470-1343</identifier><identifier>EISSN: 2470-1343</identifier><identifier>DOI: 10.1021/acsomega.4c06139</identifier><identifier>PMID: 39651106</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS omega, 2024-12, Vol.9 (48), p.47519-47531</ispartof><rights>2024 The Authors. Published by American Chemical Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c646-c2ae2dffcd41a244a71ce8efbd77e1fb699e16a224524863b45185a45c16b433</cites><orcidid>0000-0002-2334-7889 ; 0000-0002-9333-7862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39651106$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Touati, Soundous</creatorcontrib><creatorcontrib>Benghia, Ali</creatorcontrib><creatorcontrib>Hebboul, Zoulikha</creatorcontrib><creatorcontrib>Lefkaier, Ibn Khaldoun</creatorcontrib><creatorcontrib>Kanoun, Mohammed Benali</creatorcontrib><creatorcontrib>Goumri-Said, Souraya</creatorcontrib><title>Machine Learning Models for Efficient Property Prediction of ABX 3 Materials: A High-Throughput Approach</title><title>ACS omega</title><addtitle>ACS Omega</addtitle><description>Recently, ABX materials have garnered significant attention due to their diverse applications in photovoltaics, catalysis, and optoelectronics as well as their remarkable efficiency in energy conversion. However, progress has been somewhat slow due to the high expenses of the experiment or the time-consuming density functional theory (DFT) calculation. In this study, we utilized the extreme gradient boosting (XGBoost) algorithm to facilitate the discovery and characterization of ABX compounds based on vast data sets generated by DFT calculations. While the XGBoost algorithm provides a powerful tool for accelerating the discovery of ABX compounds, it is crucial to acknowledge that different DFT approximation levels can significantly impact the predicted band gaps, potentially introducing discrepancies when compared with experimental values. In the first step, we predict the space group of 13947 oxides and halides using the Open Quantum Materials Database and elemental features. Our analysis yields classification accuracies ranging from 82.39% to 99.14% across these materials. Following this, XGBoost regression algorithms are employed to interrogate the data set, enabling predictions of volume (achieving an optimal accuracy of 98.41%, with a mean absolute error (MAE) of 2.395 Å and a root-mean-square error (RMSE) of 4.416 Å ), formation energy (an optimal accuracy of 97.36%, with an MAE of 0.075 eV/atom and an RMSE of 0.132 eV/atom), and band gap energy (an optimal accuracy of 87.00%, an MAE of 0.391 eV, and an RMSE of 0.574 eV). Finally, these prediction models are employed to identify the possible space groups for each of the 1252 new ABX formulas. Then, we predict the volume, the formation energy, and the band gap energy for each candidate space group. Through these predictive models, machine learning accelerates the exploration of new materials with enhanced performance and functionality.</description><issn>2470-1343</issn><issn>2470-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkLFOwzAURS0EolXpzoT8Ayl-tuMkbKUqFKkVSHRgixznOTFq48hJh_49QW0R07vDO_dKh5B7YDNgHB616fweKz2ThikQ2RUZc5mwCIQU1__yiEy77psxBirlKVe3ZCQyFQMwNSb1RpvaNUjXqEPjmopufIm7jlof6NJaZxw2Pf0IvsXQH4eApTO98w31ls6fv6igG91jcHrXPdE5XbmqjrZ18Ieqbg89nbdt8MPGHbmxwwtOz3dCPl-W28UqWr-_vi3m68goqSLDNfLSWlNK0FxKnYDBFG1RJgmCLVSWISjNuYy5TJUoZAxprGVsQBVSiAlhp1YTfNcFtHkb3F6HYw4s_7WWX6zlZ2sD8nBC2kOxx_IPuDgSPxwXal8</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Touati, Soundous</creator><creator>Benghia, Ali</creator><creator>Hebboul, Zoulikha</creator><creator>Lefkaier, Ibn Khaldoun</creator><creator>Kanoun, Mohammed Benali</creator><creator>Goumri-Said, Souraya</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2334-7889</orcidid><orcidid>https://orcid.org/0000-0002-9333-7862</orcidid></search><sort><creationdate>20241203</creationdate><title>Machine Learning Models for Efficient Property Prediction of ABX 3 Materials: A High-Throughput Approach</title><author>Touati, Soundous ; Benghia, Ali ; Hebboul, Zoulikha ; Lefkaier, Ibn Khaldoun ; Kanoun, Mohammed Benali ; Goumri-Said, Souraya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c646-c2ae2dffcd41a244a71ce8efbd77e1fb699e16a224524863b45185a45c16b433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Touati, Soundous</creatorcontrib><creatorcontrib>Benghia, Ali</creatorcontrib><creatorcontrib>Hebboul, Zoulikha</creatorcontrib><creatorcontrib>Lefkaier, Ibn Khaldoun</creatorcontrib><creatorcontrib>Kanoun, Mohammed Benali</creatorcontrib><creatorcontrib>Goumri-Said, Souraya</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS omega</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Touati, Soundous</au><au>Benghia, Ali</au><au>Hebboul, Zoulikha</au><au>Lefkaier, Ibn Khaldoun</au><au>Kanoun, Mohammed Benali</au><au>Goumri-Said, Souraya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Models for Efficient Property Prediction of ABX 3 Materials: A High-Throughput Approach</atitle><jtitle>ACS omega</jtitle><addtitle>ACS Omega</addtitle><date>2024-12-03</date><risdate>2024</risdate><volume>9</volume><issue>48</issue><spage>47519</spage><epage>47531</epage><pages>47519-47531</pages><issn>2470-1343</issn><eissn>2470-1343</eissn><abstract>Recently, ABX materials have garnered significant attention due to their diverse applications in photovoltaics, catalysis, and optoelectronics as well as their remarkable efficiency in energy conversion. However, progress has been somewhat slow due to the high expenses of the experiment or the time-consuming density functional theory (DFT) calculation. In this study, we utilized the extreme gradient boosting (XGBoost) algorithm to facilitate the discovery and characterization of ABX compounds based on vast data sets generated by DFT calculations. While the XGBoost algorithm provides a powerful tool for accelerating the discovery of ABX compounds, it is crucial to acknowledge that different DFT approximation levels can significantly impact the predicted band gaps, potentially introducing discrepancies when compared with experimental values. In the first step, we predict the space group of 13947 oxides and halides using the Open Quantum Materials Database and elemental features. Our analysis yields classification accuracies ranging from 82.39% to 99.14% across these materials. Following this, XGBoost regression algorithms are employed to interrogate the data set, enabling predictions of volume (achieving an optimal accuracy of 98.41%, with a mean absolute error (MAE) of 2.395 Å and a root-mean-square error (RMSE) of 4.416 Å ), formation energy (an optimal accuracy of 97.36%, with an MAE of 0.075 eV/atom and an RMSE of 0.132 eV/atom), and band gap energy (an optimal accuracy of 87.00%, an MAE of 0.391 eV, and an RMSE of 0.574 eV). Finally, these prediction models are employed to identify the possible space groups for each of the 1252 new ABX formulas. Then, we predict the volume, the formation energy, and the band gap energy for each candidate space group. Through these predictive models, machine learning accelerates the exploration of new materials with enhanced performance and functionality.</abstract><cop>United States</cop><pmid>39651106</pmid><doi>10.1021/acsomega.4c06139</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2334-7889</orcidid><orcidid>https://orcid.org/0000-0002-9333-7862</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-1343
ispartof ACS omega, 2024-12, Vol.9 (48), p.47519-47531
issn 2470-1343
2470-1343
language eng
recordid cdi_crossref_primary_10_1021_acsomega_4c06139
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; American Chemical Society (ACS) Open Access; PubMed Central
title Machine Learning Models for Efficient Property Prediction of ABX 3 Materials: A High-Throughput Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Models%20for%20Efficient%20Property%20Prediction%20of%20ABX%203%20Materials:%20A%20High-Throughput%20Approach&rft.jtitle=ACS%20omega&rft.au=Touati,%20Soundous&rft.date=2024-12-03&rft.volume=9&rft.issue=48&rft.spage=47519&rft.epage=47531&rft.pages=47519-47531&rft.issn=2470-1343&rft.eissn=2470-1343&rft_id=info:doi/10.1021/acsomega.4c06139&rft_dat=%3Cpubmed_cross%3E39651106%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39651106&rfr_iscdi=true