Addressing the Effectiveness and Molecular Mechanism of the Catalytic CO 2 Hydration in Aqueous Solutions by Nickel Nanoparticles
Hydration of carbon dioxide in water solution is the rate limiting step for the CO mineralization process, a process which is at the base of many carbon capture and utilization (CCU) technologies aiming to convert carbon dioxide to added-value products and mitigate climate change. Here, we present a...
Gespeichert in:
Veröffentlicht in: | ACS omega 2024-01, Vol.9 (1), p.771-780 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 780 |
---|---|
container_issue | 1 |
container_start_page | 771 |
container_title | ACS omega |
container_volume | 9 |
creator | Sinopoli, Alessandro Liu, Ziao Abotaleb, Ahmed Alkhateeb, Alaa Gladich, Ivan |
description | Hydration of carbon dioxide in water solution is the rate limiting step for the CO
mineralization process, a process which is at the base of many carbon capture and utilization (CCU) technologies aiming to convert carbon dioxide to added-value products and mitigate climate change. Here, we present a combined experimental and computational study to clarify the effectiveness and molecular mechanism by which nickel nanoparticles, NiNPs, may enhance CO
hydration in aqueous solutions. Contrary to previous literature, our kinetic experiments recording changes of pHs, conductivity, and dissolved carbon dioxide in solution reveal a minimal effect of the NiNPs in catalyzing CO
hydration. Our atomistic simulations indicate that the Ni metal surface can coordinate only a limited number of water molecules, leaving uncoordinated metal sites for the binding of carbon dioxide or other cations in solution. This deactivates the catalyst and limits the continuous re-formation of a hydroxyl-decorated surface, which was a key chemical step in the previously suggested Ni-catalyzed hydration mechanism of carbon dioxide in aqueous solutions. At our experimental conditions, which expand the investigation of NiNP applicability toward a wider range of scenarios for CCU, NiNPs show a limited catalytic effect on the rate of CO
hydration. Our study also highlights the importance of the solvation regime: while Ni surfaces may accelerate carbon dioxide hydration in water restricted environments, it may not be the case in fully hydrated conditions. |
doi_str_mv | 10.1021/acsomega.3c06676 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsomega_3c06676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38222595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1115-5b13b7d3866b6f5e51e1c7af6ef89bfb23466e02976bd1dd4104447bdb35da033</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EolXpzoT8B1L8SJx0rKJCkfoYgDny47o1JHGJE6SM_HNaShHTuTq63xk-hG4pmVDC6L3UwVewlROuiRCpuEBDFqckojzml__uARqH8EYIoSJjGRPXaMAzxlgyTYboa2ZMAyG4eovbHeC5taBb9wn1ocSyNnjlS9BdKRu8Ar2TtQsV9vbnOZetLPvWaZxvMMOL3jSydb7Grsazjw58F_CzL7tjF7Dq8drpdyjxWtZ-L5sDWEK4QVdWlgHGvzlCrw_zl3wRLTePT_lsGWlKaRIlinKVGp4JoYRNIKFAdSqtAJtNlVWMx0IAYdNUKEONiSmJ4zhVRvHESML5CJHTrm58CA3YYt-4SjZ9QUlxFFqchRa_Qg_I3QnZd6oC8wec9fFvHXx0-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Addressing the Effectiveness and Molecular Mechanism of the Catalytic CO 2 Hydration in Aqueous Solutions by Nickel Nanoparticles</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>American Chemical Society (ACS) Open Access</source><source>PubMed Central</source><creator>Sinopoli, Alessandro ; Liu, Ziao ; Abotaleb, Ahmed ; Alkhateeb, Alaa ; Gladich, Ivan</creator><creatorcontrib>Sinopoli, Alessandro ; Liu, Ziao ; Abotaleb, Ahmed ; Alkhateeb, Alaa ; Gladich, Ivan</creatorcontrib><description>Hydration of carbon dioxide in water solution is the rate limiting step for the CO
mineralization process, a process which is at the base of many carbon capture and utilization (CCU) technologies aiming to convert carbon dioxide to added-value products and mitigate climate change. Here, we present a combined experimental and computational study to clarify the effectiveness and molecular mechanism by which nickel nanoparticles, NiNPs, may enhance CO
hydration in aqueous solutions. Contrary to previous literature, our kinetic experiments recording changes of pHs, conductivity, and dissolved carbon dioxide in solution reveal a minimal effect of the NiNPs in catalyzing CO
hydration. Our atomistic simulations indicate that the Ni metal surface can coordinate only a limited number of water molecules, leaving uncoordinated metal sites for the binding of carbon dioxide or other cations in solution. This deactivates the catalyst and limits the continuous re-formation of a hydroxyl-decorated surface, which was a key chemical step in the previously suggested Ni-catalyzed hydration mechanism of carbon dioxide in aqueous solutions. At our experimental conditions, which expand the investigation of NiNP applicability toward a wider range of scenarios for CCU, NiNPs show a limited catalytic effect on the rate of CO
hydration. Our study also highlights the importance of the solvation regime: while Ni surfaces may accelerate carbon dioxide hydration in water restricted environments, it may not be the case in fully hydrated conditions.</description><identifier>ISSN: 2470-1343</identifier><identifier>EISSN: 2470-1343</identifier><identifier>DOI: 10.1021/acsomega.3c06676</identifier><identifier>PMID: 38222595</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS omega, 2024-01, Vol.9 (1), p.771-780</ispartof><rights>2023 The Authors. Published by American Chemical Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1115-5b13b7d3866b6f5e51e1c7af6ef89bfb23466e02976bd1dd4104447bdb35da033</citedby><cites>FETCH-LOGICAL-c1115-5b13b7d3866b6f5e51e1c7af6ef89bfb23466e02976bd1dd4104447bdb35da033</cites><orcidid>0000-0003-0929-3439 ; 0000-0001-7993-4268 ; 0000-0002-0271-5101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38222595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sinopoli, Alessandro</creatorcontrib><creatorcontrib>Liu, Ziao</creatorcontrib><creatorcontrib>Abotaleb, Ahmed</creatorcontrib><creatorcontrib>Alkhateeb, Alaa</creatorcontrib><creatorcontrib>Gladich, Ivan</creatorcontrib><title>Addressing the Effectiveness and Molecular Mechanism of the Catalytic CO 2 Hydration in Aqueous Solutions by Nickel Nanoparticles</title><title>ACS omega</title><addtitle>ACS Omega</addtitle><description>Hydration of carbon dioxide in water solution is the rate limiting step for the CO
mineralization process, a process which is at the base of many carbon capture and utilization (CCU) technologies aiming to convert carbon dioxide to added-value products and mitigate climate change. Here, we present a combined experimental and computational study to clarify the effectiveness and molecular mechanism by which nickel nanoparticles, NiNPs, may enhance CO
hydration in aqueous solutions. Contrary to previous literature, our kinetic experiments recording changes of pHs, conductivity, and dissolved carbon dioxide in solution reveal a minimal effect of the NiNPs in catalyzing CO
hydration. Our atomistic simulations indicate that the Ni metal surface can coordinate only a limited number of water molecules, leaving uncoordinated metal sites for the binding of carbon dioxide or other cations in solution. This deactivates the catalyst and limits the continuous re-formation of a hydroxyl-decorated surface, which was a key chemical step in the previously suggested Ni-catalyzed hydration mechanism of carbon dioxide in aqueous solutions. At our experimental conditions, which expand the investigation of NiNP applicability toward a wider range of scenarios for CCU, NiNPs show a limited catalytic effect on the rate of CO
hydration. Our study also highlights the importance of the solvation regime: while Ni surfaces may accelerate carbon dioxide hydration in water restricted environments, it may not be the case in fully hydrated conditions.</description><issn>2470-1343</issn><issn>2470-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAUhS0EolXpzoT8B1L8SJx0rKJCkfoYgDny47o1JHGJE6SM_HNaShHTuTq63xk-hG4pmVDC6L3UwVewlROuiRCpuEBDFqckojzml__uARqH8EYIoSJjGRPXaMAzxlgyTYboa2ZMAyG4eovbHeC5taBb9wn1ocSyNnjlS9BdKRu8Ar2TtQsV9vbnOZetLPvWaZxvMMOL3jSydb7Grsazjw58F_CzL7tjF7Dq8drpdyjxWtZ-L5sDWEK4QVdWlgHGvzlCrw_zl3wRLTePT_lsGWlKaRIlinKVGp4JoYRNIKFAdSqtAJtNlVWMx0IAYdNUKEONiSmJ4zhVRvHESML5CJHTrm58CA3YYt-4SjZ9QUlxFFqchRa_Qg_I3QnZd6oC8wec9fFvHXx0-Q</recordid><startdate>20240109</startdate><enddate>20240109</enddate><creator>Sinopoli, Alessandro</creator><creator>Liu, Ziao</creator><creator>Abotaleb, Ahmed</creator><creator>Alkhateeb, Alaa</creator><creator>Gladich, Ivan</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0929-3439</orcidid><orcidid>https://orcid.org/0000-0001-7993-4268</orcidid><orcidid>https://orcid.org/0000-0002-0271-5101</orcidid></search><sort><creationdate>20240109</creationdate><title>Addressing the Effectiveness and Molecular Mechanism of the Catalytic CO 2 Hydration in Aqueous Solutions by Nickel Nanoparticles</title><author>Sinopoli, Alessandro ; Liu, Ziao ; Abotaleb, Ahmed ; Alkhateeb, Alaa ; Gladich, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1115-5b13b7d3866b6f5e51e1c7af6ef89bfb23466e02976bd1dd4104447bdb35da033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinopoli, Alessandro</creatorcontrib><creatorcontrib>Liu, Ziao</creatorcontrib><creatorcontrib>Abotaleb, Ahmed</creatorcontrib><creatorcontrib>Alkhateeb, Alaa</creatorcontrib><creatorcontrib>Gladich, Ivan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS omega</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinopoli, Alessandro</au><au>Liu, Ziao</au><au>Abotaleb, Ahmed</au><au>Alkhateeb, Alaa</au><au>Gladich, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Addressing the Effectiveness and Molecular Mechanism of the Catalytic CO 2 Hydration in Aqueous Solutions by Nickel Nanoparticles</atitle><jtitle>ACS omega</jtitle><addtitle>ACS Omega</addtitle><date>2024-01-09</date><risdate>2024</risdate><volume>9</volume><issue>1</issue><spage>771</spage><epage>780</epage><pages>771-780</pages><issn>2470-1343</issn><eissn>2470-1343</eissn><abstract>Hydration of carbon dioxide in water solution is the rate limiting step for the CO
mineralization process, a process which is at the base of many carbon capture and utilization (CCU) technologies aiming to convert carbon dioxide to added-value products and mitigate climate change. Here, we present a combined experimental and computational study to clarify the effectiveness and molecular mechanism by which nickel nanoparticles, NiNPs, may enhance CO
hydration in aqueous solutions. Contrary to previous literature, our kinetic experiments recording changes of pHs, conductivity, and dissolved carbon dioxide in solution reveal a minimal effect of the NiNPs in catalyzing CO
hydration. Our atomistic simulations indicate that the Ni metal surface can coordinate only a limited number of water molecules, leaving uncoordinated metal sites for the binding of carbon dioxide or other cations in solution. This deactivates the catalyst and limits the continuous re-formation of a hydroxyl-decorated surface, which was a key chemical step in the previously suggested Ni-catalyzed hydration mechanism of carbon dioxide in aqueous solutions. At our experimental conditions, which expand the investigation of NiNP applicability toward a wider range of scenarios for CCU, NiNPs show a limited catalytic effect on the rate of CO
hydration. Our study also highlights the importance of the solvation regime: while Ni surfaces may accelerate carbon dioxide hydration in water restricted environments, it may not be the case in fully hydrated conditions.</abstract><cop>United States</cop><pmid>38222595</pmid><doi>10.1021/acsomega.3c06676</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0929-3439</orcidid><orcidid>https://orcid.org/0000-0001-7993-4268</orcidid><orcidid>https://orcid.org/0000-0002-0271-5101</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-1343 |
ispartof | ACS omega, 2024-01, Vol.9 (1), p.771-780 |
issn | 2470-1343 2470-1343 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsomega_3c06676 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; American Chemical Society (ACS) Open Access; PubMed Central |
title | Addressing the Effectiveness and Molecular Mechanism of the Catalytic CO 2 Hydration in Aqueous Solutions by Nickel Nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Addressing%20the%20Effectiveness%20and%20Molecular%20Mechanism%20of%20the%20Catalytic%20CO%202%20Hydration%20in%20Aqueous%20Solutions%20by%20Nickel%20Nanoparticles&rft.jtitle=ACS%20omega&rft.au=Sinopoli,%20Alessandro&rft.date=2024-01-09&rft.volume=9&rft.issue=1&rft.spage=771&rft.epage=780&rft.pages=771-780&rft.issn=2470-1343&rft.eissn=2470-1343&rft_id=info:doi/10.1021/acsomega.3c06676&rft_dat=%3Cpubmed_cross%3E38222595%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38222595&rfr_iscdi=true |