Band Structure Engineering and Defect Passivation of Cu x Ag 1- x InS 2 /ZnS Quantum Dots to Enhance Photoelectrochemical Hydrogen Evolution

The AgInS colloidal quantum dot (CQD) is a promising photoanode material with a relatively wide band gap for photoelectrochemical (PEC) solar-driven hydrogen (H ) evolution. However, the unsuitable energy band structure still forms undesired energy barriers and leads to serious charge carrier recomb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2022-03, Vol.7 (11), p.9642-9651
Hauptverfasser: Guo, Heng, Yang, Peng, Hu, Jie, Jiang, Anqiang, Chen, Haiyuan, Niu, Xiaobin, Zhou, Ying
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9651
container_issue 11
container_start_page 9642
container_title ACS omega
container_volume 7
creator Guo, Heng
Yang, Peng
Hu, Jie
Jiang, Anqiang
Chen, Haiyuan
Niu, Xiaobin
Zhou, Ying
description The AgInS colloidal quantum dot (CQD) is a promising photoanode material with a relatively wide band gap for photoelectrochemical (PEC) solar-driven hydrogen (H ) evolution. However, the unsuitable energy band structure still forms undesired energy barriers and leads to serious charge carrier recombination with low solar to hydrogen conversion efficiency. Here, we propose to use the ZnS shell for defect passivation and Cu ion doping for band structure engineering to design and synthesize a series of Cu Ag InS /ZnS CQDs. ZnS shell-assisted defect passivation suppresses charge carrier recombination because of the formation of the core/shell heterojunction interface, enhancing the performance of PEC devices with better charge separation and stability. More importantly, the tunable Cu doping concentration in AgInS CQDs leads to the shift of the quantum dot band alignment, which greatly promotes the interfacial charge separation and transfer. As a result, Cu Ag InS /ZnS CQD photoanodes for PEC cells exhibit an enhanced photocurrent of 5.8 mA cm at 0.8 V versus the RHE, showing excellent photoelectrocatalytic activity for H production with greater chemical-/photostability.
doi_str_mv 10.1021/acsomega.1c07045
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsomega_1c07045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35350365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1115-603d2fec9f457897d39cd75115539974bb994c210a10d61632905bea46a654e13</originalsourceid><addsrcrecordid>eNpNkN1OwjAYhhujEYKce2R6A5P-bvQQAYWERAx64snSdd2Y2VrSdkTuwYt2BDAevV_y5n3y5QHgHqNHjAgeSeVto0v5iBVKEONXoE9YgiJMGb3-d_fA0PsvhBCOx2RM4lvQo5xyRGPeBz9P0uRwE1yrQus0nJuyMlq7ypTw2Mx0oVWAa-l9tZehsgbaAk5b-A0nJcRRl0uzgQSOPrt4a6UJbQNnNngYbEfbSqM0XG9tsLruSM6qrW4qJWu4OOTOltrA-d7W7RF9B24KWXs9POcAfDzP36eLaPX6spxOVpHCGPMoRjQn3VuiYDwZiySnQuUJ7ypOhUhYlgnBFMFIYpTHOKZEIJ5pyWIZc6YxHQB04ipnvXe6SHeuaqQ7pBilR7fpxW16dttNHk6TXZs1Ov8bXEzSX23bdgU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Band Structure Engineering and Defect Passivation of Cu x Ag 1- x InS 2 /ZnS Quantum Dots to Enhance Photoelectrochemical Hydrogen Evolution</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>American Chemical Society (ACS) Open Access</source><source>PubMed Central</source><creator>Guo, Heng ; Yang, Peng ; Hu, Jie ; Jiang, Anqiang ; Chen, Haiyuan ; Niu, Xiaobin ; Zhou, Ying</creator><creatorcontrib>Guo, Heng ; Yang, Peng ; Hu, Jie ; Jiang, Anqiang ; Chen, Haiyuan ; Niu, Xiaobin ; Zhou, Ying</creatorcontrib><description>The AgInS colloidal quantum dot (CQD) is a promising photoanode material with a relatively wide band gap for photoelectrochemical (PEC) solar-driven hydrogen (H ) evolution. However, the unsuitable energy band structure still forms undesired energy barriers and leads to serious charge carrier recombination with low solar to hydrogen conversion efficiency. Here, we propose to use the ZnS shell for defect passivation and Cu ion doping for band structure engineering to design and synthesize a series of Cu Ag InS /ZnS CQDs. ZnS shell-assisted defect passivation suppresses charge carrier recombination because of the formation of the core/shell heterojunction interface, enhancing the performance of PEC devices with better charge separation and stability. More importantly, the tunable Cu doping concentration in AgInS CQDs leads to the shift of the quantum dot band alignment, which greatly promotes the interfacial charge separation and transfer. As a result, Cu Ag InS /ZnS CQD photoanodes for PEC cells exhibit an enhanced photocurrent of 5.8 mA cm at 0.8 V versus the RHE, showing excellent photoelectrocatalytic activity for H production with greater chemical-/photostability.</description><identifier>ISSN: 2470-1343</identifier><identifier>EISSN: 2470-1343</identifier><identifier>DOI: 10.1021/acsomega.1c07045</identifier><identifier>PMID: 35350365</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS omega, 2022-03, Vol.7 (11), p.9642-9651</ispartof><rights>2022 The Authors. Published by American Chemical Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1115-603d2fec9f457897d39cd75115539974bb994c210a10d61632905bea46a654e13</citedby><cites>FETCH-LOGICAL-c1115-603d2fec9f457897d39cd75115539974bb994c210a10d61632905bea46a654e13</cites><orcidid>0000-0001-9995-0652 ; 0000-0002-8117-6790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35350365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Heng</creatorcontrib><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Hu, Jie</creatorcontrib><creatorcontrib>Jiang, Anqiang</creatorcontrib><creatorcontrib>Chen, Haiyuan</creatorcontrib><creatorcontrib>Niu, Xiaobin</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><title>Band Structure Engineering and Defect Passivation of Cu x Ag 1- x InS 2 /ZnS Quantum Dots to Enhance Photoelectrochemical Hydrogen Evolution</title><title>ACS omega</title><addtitle>ACS Omega</addtitle><description>The AgInS colloidal quantum dot (CQD) is a promising photoanode material with a relatively wide band gap for photoelectrochemical (PEC) solar-driven hydrogen (H ) evolution. However, the unsuitable energy band structure still forms undesired energy barriers and leads to serious charge carrier recombination with low solar to hydrogen conversion efficiency. Here, we propose to use the ZnS shell for defect passivation and Cu ion doping for band structure engineering to design and synthesize a series of Cu Ag InS /ZnS CQDs. ZnS shell-assisted defect passivation suppresses charge carrier recombination because of the formation of the core/shell heterojunction interface, enhancing the performance of PEC devices with better charge separation and stability. More importantly, the tunable Cu doping concentration in AgInS CQDs leads to the shift of the quantum dot band alignment, which greatly promotes the interfacial charge separation and transfer. As a result, Cu Ag InS /ZnS CQD photoanodes for PEC cells exhibit an enhanced photocurrent of 5.8 mA cm at 0.8 V versus the RHE, showing excellent photoelectrocatalytic activity for H production with greater chemical-/photostability.</description><issn>2470-1343</issn><issn>2470-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkN1OwjAYhhujEYKce2R6A5P-bvQQAYWERAx64snSdd2Y2VrSdkTuwYt2BDAevV_y5n3y5QHgHqNHjAgeSeVto0v5iBVKEONXoE9YgiJMGb3-d_fA0PsvhBCOx2RM4lvQo5xyRGPeBz9P0uRwE1yrQus0nJuyMlq7ypTw2Mx0oVWAa-l9tZehsgbaAk5b-A0nJcRRl0uzgQSOPrt4a6UJbQNnNngYbEfbSqM0XG9tsLruSM6qrW4qJWu4OOTOltrA-d7W7RF9B24KWXs9POcAfDzP36eLaPX6spxOVpHCGPMoRjQn3VuiYDwZiySnQuUJ7ypOhUhYlgnBFMFIYpTHOKZEIJ5pyWIZc6YxHQB04ipnvXe6SHeuaqQ7pBilR7fpxW16dttNHk6TXZs1Ov8bXEzSX23bdgU</recordid><startdate>20220322</startdate><enddate>20220322</enddate><creator>Guo, Heng</creator><creator>Yang, Peng</creator><creator>Hu, Jie</creator><creator>Jiang, Anqiang</creator><creator>Chen, Haiyuan</creator><creator>Niu, Xiaobin</creator><creator>Zhou, Ying</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9995-0652</orcidid><orcidid>https://orcid.org/0000-0002-8117-6790</orcidid></search><sort><creationdate>20220322</creationdate><title>Band Structure Engineering and Defect Passivation of Cu x Ag 1- x InS 2 /ZnS Quantum Dots to Enhance Photoelectrochemical Hydrogen Evolution</title><author>Guo, Heng ; Yang, Peng ; Hu, Jie ; Jiang, Anqiang ; Chen, Haiyuan ; Niu, Xiaobin ; Zhou, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1115-603d2fec9f457897d39cd75115539974bb994c210a10d61632905bea46a654e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Heng</creatorcontrib><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Hu, Jie</creatorcontrib><creatorcontrib>Jiang, Anqiang</creatorcontrib><creatorcontrib>Chen, Haiyuan</creatorcontrib><creatorcontrib>Niu, Xiaobin</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS omega</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Heng</au><au>Yang, Peng</au><au>Hu, Jie</au><au>Jiang, Anqiang</au><au>Chen, Haiyuan</au><au>Niu, Xiaobin</au><au>Zhou, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Band Structure Engineering and Defect Passivation of Cu x Ag 1- x InS 2 /ZnS Quantum Dots to Enhance Photoelectrochemical Hydrogen Evolution</atitle><jtitle>ACS omega</jtitle><addtitle>ACS Omega</addtitle><date>2022-03-22</date><risdate>2022</risdate><volume>7</volume><issue>11</issue><spage>9642</spage><epage>9651</epage><pages>9642-9651</pages><issn>2470-1343</issn><eissn>2470-1343</eissn><abstract>The AgInS colloidal quantum dot (CQD) is a promising photoanode material with a relatively wide band gap for photoelectrochemical (PEC) solar-driven hydrogen (H ) evolution. However, the unsuitable energy band structure still forms undesired energy barriers and leads to serious charge carrier recombination with low solar to hydrogen conversion efficiency. Here, we propose to use the ZnS shell for defect passivation and Cu ion doping for band structure engineering to design and synthesize a series of Cu Ag InS /ZnS CQDs. ZnS shell-assisted defect passivation suppresses charge carrier recombination because of the formation of the core/shell heterojunction interface, enhancing the performance of PEC devices with better charge separation and stability. More importantly, the tunable Cu doping concentration in AgInS CQDs leads to the shift of the quantum dot band alignment, which greatly promotes the interfacial charge separation and transfer. As a result, Cu Ag InS /ZnS CQD photoanodes for PEC cells exhibit an enhanced photocurrent of 5.8 mA cm at 0.8 V versus the RHE, showing excellent photoelectrocatalytic activity for H production with greater chemical-/photostability.</abstract><cop>United States</cop><pmid>35350365</pmid><doi>10.1021/acsomega.1c07045</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9995-0652</orcidid><orcidid>https://orcid.org/0000-0002-8117-6790</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-1343
ispartof ACS omega, 2022-03, Vol.7 (11), p.9642-9651
issn 2470-1343
2470-1343
language eng
recordid cdi_crossref_primary_10_1021_acsomega_1c07045
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; American Chemical Society (ACS) Open Access; PubMed Central
title Band Structure Engineering and Defect Passivation of Cu x Ag 1- x InS 2 /ZnS Quantum Dots to Enhance Photoelectrochemical Hydrogen Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A57%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Band%20Structure%20Engineering%20and%20Defect%20Passivation%20of%20Cu%20x%20Ag%201-%20x%20InS%202%20/ZnS%20Quantum%20Dots%20to%20Enhance%20Photoelectrochemical%20Hydrogen%20Evolution&rft.jtitle=ACS%20omega&rft.au=Guo,%20Heng&rft.date=2022-03-22&rft.volume=7&rft.issue=11&rft.spage=9642&rft.epage=9651&rft.pages=9642-9651&rft.issn=2470-1343&rft.eissn=2470-1343&rft_id=info:doi/10.1021/acsomega.1c07045&rft_dat=%3Cpubmed_cross%3E35350365%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35350365&rfr_iscdi=true