Spill-SOS: Self-Pumping Siphon-Capillary Oil Recovery

Oil spills remain a worldwide challenge and need emergency “spill-SOS” actions when they occur. Conventional methods suffer from complex processes and high cost. Here, we demonstrate a solar-heating siphon-capillary oil skimmer (S-SOS) that harvests solar energy, gravitational potential energy, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2019-11, Vol.13 (11), p.13027-13036
Hauptverfasser: Wu, Shenghao, Yang, Huachao, Xiong, Guoping, Tian, Yikuan, Gong, Biyao, Luo, Tengfei, Fisher, Timothy S, Yan, Jianhua, Cen, Kefa, Bo, Zheng, Ostrikov, Kostya Ken
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13036
container_issue 11
container_start_page 13027
container_title ACS nano
container_volume 13
creator Wu, Shenghao
Yang, Huachao
Xiong, Guoping
Tian, Yikuan
Gong, Biyao
Luo, Tengfei
Fisher, Timothy S
Yan, Jianhua
Cen, Kefa
Bo, Zheng
Ostrikov, Kostya Ken
description Oil spills remain a worldwide challenge and need emergency “spill-SOS” actions when they occur. Conventional methods suffer from complex processes and high cost. Here, we demonstrate a solar-heating siphon-capillary oil skimmer (S-SOS) that harvests solar energy, gravitational potential energy, and solid surface energy to enable efficient oil spill recovery in a self-pumping manner. The S-SOS is assembled by an inverted U-shape porous architecture combining solar-heating, siphon, and capillary effects, and works without any external power or manual interventions. Importantly, solid surface energy is used by capillary adsorption to enable the self-starting behavior, gravitational potential energy is utilized by siphon transport to drive the oil flow, and solar energy is harvested by solar-thermal conversion to facilitate the transport speed. In the proof-of-concept work, an all-carbon hierarchical architecture (VG/GF) is fabricated by growing vertically oriented graphene nanosheets (VGs) on a monolith of graphite felt (GF) via a plasma-enhanced method to serve as the U-shape architecture. Consequently, an oil-recovery rate of 35.2 L m–2 h–1 is obtained at ambient condition. When exposed to normal solar irradiation, the oil-recovery rate dramatically increases to 123.3 L m–2 h–1. Meanwhile, the solar-thermal energy efficiency is calculated to be 75.3%. Moreover, the S-SOS system presents excellent stability without obvious performance-degradation over 60 h. The outstanding performance is ascribed to the enhanced siphon action, capillary action, photonic absorption, and interfacial heating in the plasma-made graphene nanostructures. Multiple merits make the current S-SOS design and the VG/GF nanostructures promising for efficient oil recovery and transport of energy stored in chemical bonds.
doi_str_mv 10.1021/acsnano.9b05703
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsnano_9b05703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c50301022</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-af984899e2eb6d57de0df8a5c4e89948b962c55ac0ff6fc8387310c3a9304b033</originalsourceid><addsrcrecordid>eNp1UE1LxDAUDKK46-rZm_Qu2X1pmjTxJmX9gIWKVfBW0jTRLv2iscL-e7Ns3Zun93hvZpgZhK4JLAmEZKW0a1XbLWUBLAZ6guZEUo5B8I_T487IDF04twWPETE_RzNKOIeYkjliWV_VNc7S7C7ITG3xy9j0VfsZZFX_1bU4Ufu_GnZBWtXBq9Hdjxl2l-jMqtqZq2ku0PvD-i15wpv08Tm532BF4-gbKytFJKQ0oSl4yeLSQGmFYjoy_hqJQvJQM6Y0WMutFlR4T6CpkhSiAihdoNVBVw-dc4OxeT9UjXeTE8j3BeRTAflUgGfcHBj9WDSmPOL_EnvA7QHgmfm2G4fWB_hX7hdG9WWx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spill-SOS: Self-Pumping Siphon-Capillary Oil Recovery</title><source>American Chemical Society Journals</source><creator>Wu, Shenghao ; Yang, Huachao ; Xiong, Guoping ; Tian, Yikuan ; Gong, Biyao ; Luo, Tengfei ; Fisher, Timothy S ; Yan, Jianhua ; Cen, Kefa ; Bo, Zheng ; Ostrikov, Kostya Ken</creator><creatorcontrib>Wu, Shenghao ; Yang, Huachao ; Xiong, Guoping ; Tian, Yikuan ; Gong, Biyao ; Luo, Tengfei ; Fisher, Timothy S ; Yan, Jianhua ; Cen, Kefa ; Bo, Zheng ; Ostrikov, Kostya Ken</creatorcontrib><description>Oil spills remain a worldwide challenge and need emergency “spill-SOS” actions when they occur. Conventional methods suffer from complex processes and high cost. Here, we demonstrate a solar-heating siphon-capillary oil skimmer (S-SOS) that harvests solar energy, gravitational potential energy, and solid surface energy to enable efficient oil spill recovery in a self-pumping manner. The S-SOS is assembled by an inverted U-shape porous architecture combining solar-heating, siphon, and capillary effects, and works without any external power or manual interventions. Importantly, solid surface energy is used by capillary adsorption to enable the self-starting behavior, gravitational potential energy is utilized by siphon transport to drive the oil flow, and solar energy is harvested by solar-thermal conversion to facilitate the transport speed. In the proof-of-concept work, an all-carbon hierarchical architecture (VG/GF) is fabricated by growing vertically oriented graphene nanosheets (VGs) on a monolith of graphite felt (GF) via a plasma-enhanced method to serve as the U-shape architecture. Consequently, an oil-recovery rate of 35.2 L m–2 h–1 is obtained at ambient condition. When exposed to normal solar irradiation, the oil-recovery rate dramatically increases to 123.3 L m–2 h–1. Meanwhile, the solar-thermal energy efficiency is calculated to be 75.3%. Moreover, the S-SOS system presents excellent stability without obvious performance-degradation over 60 h. The outstanding performance is ascribed to the enhanced siphon action, capillary action, photonic absorption, and interfacial heating in the plasma-made graphene nanostructures. Multiple merits make the current S-SOS design and the VG/GF nanostructures promising for efficient oil recovery and transport of energy stored in chemical bonds.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.9b05703</identifier><identifier>PMID: 31660731</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2019-11, Vol.13 (11), p.13027-13036</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-af984899e2eb6d57de0df8a5c4e89948b962c55ac0ff6fc8387310c3a9304b033</citedby><cites>FETCH-LOGICAL-a374t-af984899e2eb6d57de0df8a5c4e89948b962c55ac0ff6fc8387310c3a9304b033</cites><orcidid>0000-0002-8909-313X ; 0000-0001-9308-7624 ; 0000-0001-8672-9297 ; 0000-0003-3940-8786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.9b05703$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.9b05703$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31660731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Shenghao</creatorcontrib><creatorcontrib>Yang, Huachao</creatorcontrib><creatorcontrib>Xiong, Guoping</creatorcontrib><creatorcontrib>Tian, Yikuan</creatorcontrib><creatorcontrib>Gong, Biyao</creatorcontrib><creatorcontrib>Luo, Tengfei</creatorcontrib><creatorcontrib>Fisher, Timothy S</creatorcontrib><creatorcontrib>Yan, Jianhua</creatorcontrib><creatorcontrib>Cen, Kefa</creatorcontrib><creatorcontrib>Bo, Zheng</creatorcontrib><creatorcontrib>Ostrikov, Kostya Ken</creatorcontrib><title>Spill-SOS: Self-Pumping Siphon-Capillary Oil Recovery</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Oil spills remain a worldwide challenge and need emergency “spill-SOS” actions when they occur. Conventional methods suffer from complex processes and high cost. Here, we demonstrate a solar-heating siphon-capillary oil skimmer (S-SOS) that harvests solar energy, gravitational potential energy, and solid surface energy to enable efficient oil spill recovery in a self-pumping manner. The S-SOS is assembled by an inverted U-shape porous architecture combining solar-heating, siphon, and capillary effects, and works without any external power or manual interventions. Importantly, solid surface energy is used by capillary adsorption to enable the self-starting behavior, gravitational potential energy is utilized by siphon transport to drive the oil flow, and solar energy is harvested by solar-thermal conversion to facilitate the transport speed. In the proof-of-concept work, an all-carbon hierarchical architecture (VG/GF) is fabricated by growing vertically oriented graphene nanosheets (VGs) on a monolith of graphite felt (GF) via a plasma-enhanced method to serve as the U-shape architecture. Consequently, an oil-recovery rate of 35.2 L m–2 h–1 is obtained at ambient condition. When exposed to normal solar irradiation, the oil-recovery rate dramatically increases to 123.3 L m–2 h–1. Meanwhile, the solar-thermal energy efficiency is calculated to be 75.3%. Moreover, the S-SOS system presents excellent stability without obvious performance-degradation over 60 h. The outstanding performance is ascribed to the enhanced siphon action, capillary action, photonic absorption, and interfacial heating in the plasma-made graphene nanostructures. Multiple merits make the current S-SOS design and the VG/GF nanostructures promising for efficient oil recovery and transport of energy stored in chemical bonds.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAUDKK46-rZm_Qu2X1pmjTxJmX9gIWKVfBW0jTRLv2iscL-e7Ns3Zun93hvZpgZhK4JLAmEZKW0a1XbLWUBLAZ6guZEUo5B8I_T487IDF04twWPETE_RzNKOIeYkjliWV_VNc7S7C7ITG3xy9j0VfsZZFX_1bU4Ufu_GnZBWtXBq9Hdjxl2l-jMqtqZq2ku0PvD-i15wpv08Tm532BF4-gbKytFJKQ0oSl4yeLSQGmFYjoy_hqJQvJQM6Y0WMutFlR4T6CpkhSiAihdoNVBVw-dc4OxeT9UjXeTE8j3BeRTAflUgGfcHBj9WDSmPOL_EnvA7QHgmfm2G4fWB_hX7hdG9WWx</recordid><startdate>20191126</startdate><enddate>20191126</enddate><creator>Wu, Shenghao</creator><creator>Yang, Huachao</creator><creator>Xiong, Guoping</creator><creator>Tian, Yikuan</creator><creator>Gong, Biyao</creator><creator>Luo, Tengfei</creator><creator>Fisher, Timothy S</creator><creator>Yan, Jianhua</creator><creator>Cen, Kefa</creator><creator>Bo, Zheng</creator><creator>Ostrikov, Kostya Ken</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8909-313X</orcidid><orcidid>https://orcid.org/0000-0001-9308-7624</orcidid><orcidid>https://orcid.org/0000-0001-8672-9297</orcidid><orcidid>https://orcid.org/0000-0003-3940-8786</orcidid></search><sort><creationdate>20191126</creationdate><title>Spill-SOS: Self-Pumping Siphon-Capillary Oil Recovery</title><author>Wu, Shenghao ; Yang, Huachao ; Xiong, Guoping ; Tian, Yikuan ; Gong, Biyao ; Luo, Tengfei ; Fisher, Timothy S ; Yan, Jianhua ; Cen, Kefa ; Bo, Zheng ; Ostrikov, Kostya Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-af984899e2eb6d57de0df8a5c4e89948b962c55ac0ff6fc8387310c3a9304b033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Shenghao</creatorcontrib><creatorcontrib>Yang, Huachao</creatorcontrib><creatorcontrib>Xiong, Guoping</creatorcontrib><creatorcontrib>Tian, Yikuan</creatorcontrib><creatorcontrib>Gong, Biyao</creatorcontrib><creatorcontrib>Luo, Tengfei</creatorcontrib><creatorcontrib>Fisher, Timothy S</creatorcontrib><creatorcontrib>Yan, Jianhua</creatorcontrib><creatorcontrib>Cen, Kefa</creatorcontrib><creatorcontrib>Bo, Zheng</creatorcontrib><creatorcontrib>Ostrikov, Kostya Ken</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Shenghao</au><au>Yang, Huachao</au><au>Xiong, Guoping</au><au>Tian, Yikuan</au><au>Gong, Biyao</au><au>Luo, Tengfei</au><au>Fisher, Timothy S</au><au>Yan, Jianhua</au><au>Cen, Kefa</au><au>Bo, Zheng</au><au>Ostrikov, Kostya Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spill-SOS: Self-Pumping Siphon-Capillary Oil Recovery</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2019-11-26</date><risdate>2019</risdate><volume>13</volume><issue>11</issue><spage>13027</spage><epage>13036</epage><pages>13027-13036</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Oil spills remain a worldwide challenge and need emergency “spill-SOS” actions when they occur. Conventional methods suffer from complex processes and high cost. Here, we demonstrate a solar-heating siphon-capillary oil skimmer (S-SOS) that harvests solar energy, gravitational potential energy, and solid surface energy to enable efficient oil spill recovery in a self-pumping manner. The S-SOS is assembled by an inverted U-shape porous architecture combining solar-heating, siphon, and capillary effects, and works without any external power or manual interventions. Importantly, solid surface energy is used by capillary adsorption to enable the self-starting behavior, gravitational potential energy is utilized by siphon transport to drive the oil flow, and solar energy is harvested by solar-thermal conversion to facilitate the transport speed. In the proof-of-concept work, an all-carbon hierarchical architecture (VG/GF) is fabricated by growing vertically oriented graphene nanosheets (VGs) on a monolith of graphite felt (GF) via a plasma-enhanced method to serve as the U-shape architecture. Consequently, an oil-recovery rate of 35.2 L m–2 h–1 is obtained at ambient condition. When exposed to normal solar irradiation, the oil-recovery rate dramatically increases to 123.3 L m–2 h–1. Meanwhile, the solar-thermal energy efficiency is calculated to be 75.3%. Moreover, the S-SOS system presents excellent stability without obvious performance-degradation over 60 h. The outstanding performance is ascribed to the enhanced siphon action, capillary action, photonic absorption, and interfacial heating in the plasma-made graphene nanostructures. Multiple merits make the current S-SOS design and the VG/GF nanostructures promising for efficient oil recovery and transport of energy stored in chemical bonds.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31660731</pmid><doi>10.1021/acsnano.9b05703</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8909-313X</orcidid><orcidid>https://orcid.org/0000-0001-9308-7624</orcidid><orcidid>https://orcid.org/0000-0001-8672-9297</orcidid><orcidid>https://orcid.org/0000-0003-3940-8786</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2019-11, Vol.13 (11), p.13027-13036
issn 1936-0851
1936-086X
language eng
recordid cdi_crossref_primary_10_1021_acsnano_9b05703
source American Chemical Society Journals
title Spill-SOS: Self-Pumping Siphon-Capillary Oil Recovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spill-SOS:%20Self-Pumping%20Siphon-Capillary%20Oil%20Recovery&rft.jtitle=ACS%20nano&rft.au=Wu,%20Shenghao&rft.date=2019-11-26&rft.volume=13&rft.issue=11&rft.spage=13027&rft.epage=13036&rft.pages=13027-13036&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.9b05703&rft_dat=%3Cacs_cross%3Ec50301022%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31660731&rfr_iscdi=true