Mapping Hot Spots at Heterogeneities of Few-Layer Ti 3 C 2 MXene Sheets

Structural defects and heterogeneities play an enormous role in the formation of localized hot spots in 2D materials used in a wide range of applications from electronics to energy systems. In this report, we employ scanning thermal microscopy (SThM) to spatially map the temperature rise across vari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2019-03, Vol.13 (3), p.3301-3309
Hauptverfasser: Yasaei, Poya, Tu, Qing, Xu, Yaobin, Verger, Louisiane, Wu, Jinsong, Barsoum, Michel W, Shekhawat, Gajendra S, Dravid, Vinayak P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3309
container_issue 3
container_start_page 3301
container_title ACS nano
container_volume 13
creator Yasaei, Poya
Tu, Qing
Xu, Yaobin
Verger, Louisiane
Wu, Jinsong
Barsoum, Michel W
Shekhawat, Gajendra S
Dravid, Vinayak P
description Structural defects and heterogeneities play an enormous role in the formation of localized hot spots in 2D materials used in a wide range of applications from electronics to energy systems. In this report, we employ scanning thermal microscopy (SThM) to spatially map the temperature rise across various defects and heterogeneities of titanium carbide (Ti C T ; T stands for surface terminations) MXene nanostructures under high electrical bias with sub-50 mK temperature resolution and sub-100 nm spatial resolution. We investigated several Ti C T flakes having different thicknesses as well as heterogeneous MXene structures incorporating line defects or vertical heterojunctions. High-resolution temperature rise maps allow us to identify localized hot spots and to quantify the nonuniformity of the temperature fields across various morphological features. The results show that the local heating is most severe in vertical junctions of MXene flakes and is highly affected by nonuniform conduction due to the presence of line defects. These results provide a direct insight into the power dissipation of MXene-based devices and the roles of various heterogeneities that are inherent to the material synthesis process. This study provides a guideline for how a better understanding of the structure-property-processing correlations and further optimization of the synthesis routes could improve the lifetime, safety, and operation limits of the MXene-based devices.
doi_str_mv 10.1021/acsnano.8b09103
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsnano_8b09103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30811181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-e065d1114c6353b95cd02b21bf233972eb847292614827c82a6de0b822a42a403</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRbK2evcn-gbQzu8lmc5RgWyHFQyv0FnaTSY3YJGRXpP_eSGNh4J3D-wEPY48IcwSBC1O4xjTtXFtIEOQVm2IiVQBa7a8vf4QTdufcJ0AU61jdsokEjYgap2y1MV1XNwe-bj3fdq133Hi-Jk99e6CGal-T423Fl_QTZOZEPd_VXPKUC77ZDwa-_SDy7p7dVObL0cOoM_a-fNml6yB7W72mz1lQYJz4gEBF5TAdFkpG0iZRUYKwAm0lpExiQVaHsUiEwlCLuNDCqJLAaiFMOBzIGVuce4u-da6nKu_6-mj6U46Q_yHJRyT5iGRIPJ0T3bc9Unnx_zOQvwTdW2o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mapping Hot Spots at Heterogeneities of Few-Layer Ti 3 C 2 MXene Sheets</title><source>American Chemical Society Journals</source><creator>Yasaei, Poya ; Tu, Qing ; Xu, Yaobin ; Verger, Louisiane ; Wu, Jinsong ; Barsoum, Michel W ; Shekhawat, Gajendra S ; Dravid, Vinayak P</creator><creatorcontrib>Yasaei, Poya ; Tu, Qing ; Xu, Yaobin ; Verger, Louisiane ; Wu, Jinsong ; Barsoum, Michel W ; Shekhawat, Gajendra S ; Dravid, Vinayak P</creatorcontrib><description>Structural defects and heterogeneities play an enormous role in the formation of localized hot spots in 2D materials used in a wide range of applications from electronics to energy systems. In this report, we employ scanning thermal microscopy (SThM) to spatially map the temperature rise across various defects and heterogeneities of titanium carbide (Ti C T ; T stands for surface terminations) MXene nanostructures under high electrical bias with sub-50 mK temperature resolution and sub-100 nm spatial resolution. We investigated several Ti C T flakes having different thicknesses as well as heterogeneous MXene structures incorporating line defects or vertical heterojunctions. High-resolution temperature rise maps allow us to identify localized hot spots and to quantify the nonuniformity of the temperature fields across various morphological features. The results show that the local heating is most severe in vertical junctions of MXene flakes and is highly affected by nonuniform conduction due to the presence of line defects. These results provide a direct insight into the power dissipation of MXene-based devices and the roles of various heterogeneities that are inherent to the material synthesis process. This study provides a guideline for how a better understanding of the structure-property-processing correlations and further optimization of the synthesis routes could improve the lifetime, safety, and operation limits of the MXene-based devices.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b09103</identifier><identifier>PMID: 30811181</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS nano, 2019-03, Vol.13 (3), p.3301-3309</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c179t-e065d1114c6353b95cd02b21bf233972eb847292614827c82a6de0b822a42a403</citedby><cites>FETCH-LOGICAL-c179t-e065d1114c6353b95cd02b21bf233972eb847292614827c82a6de0b822a42a403</cites><orcidid>0000-0003-3497-288X ; 0000-0001-7800-3517 ; 0000-0002-6007-3063 ; 0000-0002-7305-7927 ; 0000-0002-0445-6289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2754,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30811181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yasaei, Poya</creatorcontrib><creatorcontrib>Tu, Qing</creatorcontrib><creatorcontrib>Xu, Yaobin</creatorcontrib><creatorcontrib>Verger, Louisiane</creatorcontrib><creatorcontrib>Wu, Jinsong</creatorcontrib><creatorcontrib>Barsoum, Michel W</creatorcontrib><creatorcontrib>Shekhawat, Gajendra S</creatorcontrib><creatorcontrib>Dravid, Vinayak P</creatorcontrib><title>Mapping Hot Spots at Heterogeneities of Few-Layer Ti 3 C 2 MXene Sheets</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Structural defects and heterogeneities play an enormous role in the formation of localized hot spots in 2D materials used in a wide range of applications from electronics to energy systems. In this report, we employ scanning thermal microscopy (SThM) to spatially map the temperature rise across various defects and heterogeneities of titanium carbide (Ti C T ; T stands for surface terminations) MXene nanostructures under high electrical bias with sub-50 mK temperature resolution and sub-100 nm spatial resolution. We investigated several Ti C T flakes having different thicknesses as well as heterogeneous MXene structures incorporating line defects or vertical heterojunctions. High-resolution temperature rise maps allow us to identify localized hot spots and to quantify the nonuniformity of the temperature fields across various morphological features. The results show that the local heating is most severe in vertical junctions of MXene flakes and is highly affected by nonuniform conduction due to the presence of line defects. These results provide a direct insight into the power dissipation of MXene-based devices and the roles of various heterogeneities that are inherent to the material synthesis process. This study provides a guideline for how a better understanding of the structure-property-processing correlations and further optimization of the synthesis routes could improve the lifetime, safety, and operation limits of the MXene-based devices.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRbK2evcn-gbQzu8lmc5RgWyHFQyv0FnaTSY3YJGRXpP_eSGNh4J3D-wEPY48IcwSBC1O4xjTtXFtIEOQVm2IiVQBa7a8vf4QTdufcJ0AU61jdsokEjYgap2y1MV1XNwe-bj3fdq133Hi-Jk99e6CGal-T423Fl_QTZOZEPd_VXPKUC77ZDwa-_SDy7p7dVObL0cOoM_a-fNml6yB7W72mz1lQYJz4gEBF5TAdFkpG0iZRUYKwAm0lpExiQVaHsUiEwlCLuNDCqJLAaiFMOBzIGVuce4u-da6nKu_6-mj6U46Q_yHJRyT5iGRIPJ0T3bc9Unnx_zOQvwTdW2o</recordid><startdate>20190326</startdate><enddate>20190326</enddate><creator>Yasaei, Poya</creator><creator>Tu, Qing</creator><creator>Xu, Yaobin</creator><creator>Verger, Louisiane</creator><creator>Wu, Jinsong</creator><creator>Barsoum, Michel W</creator><creator>Shekhawat, Gajendra S</creator><creator>Dravid, Vinayak P</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3497-288X</orcidid><orcidid>https://orcid.org/0000-0001-7800-3517</orcidid><orcidid>https://orcid.org/0000-0002-6007-3063</orcidid><orcidid>https://orcid.org/0000-0002-7305-7927</orcidid><orcidid>https://orcid.org/0000-0002-0445-6289</orcidid></search><sort><creationdate>20190326</creationdate><title>Mapping Hot Spots at Heterogeneities of Few-Layer Ti 3 C 2 MXene Sheets</title><author>Yasaei, Poya ; Tu, Qing ; Xu, Yaobin ; Verger, Louisiane ; Wu, Jinsong ; Barsoum, Michel W ; Shekhawat, Gajendra S ; Dravid, Vinayak P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-e065d1114c6353b95cd02b21bf233972eb847292614827c82a6de0b822a42a403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yasaei, Poya</creatorcontrib><creatorcontrib>Tu, Qing</creatorcontrib><creatorcontrib>Xu, Yaobin</creatorcontrib><creatorcontrib>Verger, Louisiane</creatorcontrib><creatorcontrib>Wu, Jinsong</creatorcontrib><creatorcontrib>Barsoum, Michel W</creatorcontrib><creatorcontrib>Shekhawat, Gajendra S</creatorcontrib><creatorcontrib>Dravid, Vinayak P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yasaei, Poya</au><au>Tu, Qing</au><au>Xu, Yaobin</au><au>Verger, Louisiane</au><au>Wu, Jinsong</au><au>Barsoum, Michel W</au><au>Shekhawat, Gajendra S</au><au>Dravid, Vinayak P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping Hot Spots at Heterogeneities of Few-Layer Ti 3 C 2 MXene Sheets</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2019-03-26</date><risdate>2019</risdate><volume>13</volume><issue>3</issue><spage>3301</spage><epage>3309</epage><pages>3301-3309</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Structural defects and heterogeneities play an enormous role in the formation of localized hot spots in 2D materials used in a wide range of applications from electronics to energy systems. In this report, we employ scanning thermal microscopy (SThM) to spatially map the temperature rise across various defects and heterogeneities of titanium carbide (Ti C T ; T stands for surface terminations) MXene nanostructures under high electrical bias with sub-50 mK temperature resolution and sub-100 nm spatial resolution. We investigated several Ti C T flakes having different thicknesses as well as heterogeneous MXene structures incorporating line defects or vertical heterojunctions. High-resolution temperature rise maps allow us to identify localized hot spots and to quantify the nonuniformity of the temperature fields across various morphological features. The results show that the local heating is most severe in vertical junctions of MXene flakes and is highly affected by nonuniform conduction due to the presence of line defects. These results provide a direct insight into the power dissipation of MXene-based devices and the roles of various heterogeneities that are inherent to the material synthesis process. This study provides a guideline for how a better understanding of the structure-property-processing correlations and further optimization of the synthesis routes could improve the lifetime, safety, and operation limits of the MXene-based devices.</abstract><cop>United States</cop><pmid>30811181</pmid><doi>10.1021/acsnano.8b09103</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3497-288X</orcidid><orcidid>https://orcid.org/0000-0001-7800-3517</orcidid><orcidid>https://orcid.org/0000-0002-6007-3063</orcidid><orcidid>https://orcid.org/0000-0002-7305-7927</orcidid><orcidid>https://orcid.org/0000-0002-0445-6289</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2019-03, Vol.13 (3), p.3301-3309
issn 1936-0851
1936-086X
language eng
recordid cdi_crossref_primary_10_1021_acsnano_8b09103
source American Chemical Society Journals
title Mapping Hot Spots at Heterogeneities of Few-Layer Ti 3 C 2 MXene Sheets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20Hot%20Spots%20at%20Heterogeneities%20of%20Few-Layer%20Ti%203%20C%202%20MXene%20Sheets&rft.jtitle=ACS%20nano&rft.au=Yasaei,%20Poya&rft.date=2019-03-26&rft.volume=13&rft.issue=3&rft.spage=3301&rft.epage=3309&rft.pages=3301-3309&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b09103&rft_dat=%3Cpubmed_cross%3E30811181%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30811181&rfr_iscdi=true