Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime

The interaction between plasmons in metal nanostructures and excitons in layered materials attracts recent interests due to its fascinating properties inherited from the two constituents, e.g., the high tunability on its spectral or spatial properties from the plasmonic component, and the large opti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2018-10, Vol.12 (10), p.10393-10402
Hauptverfasser: Sun, Jiawei, Hu, Huatian, Zheng, Di, Zhang, Daxiao, Deng, Qian, Zhang, Shunping, Xu, Hongxing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10402
container_issue 10
container_start_page 10393
container_title ACS nano
container_volume 12
creator Sun, Jiawei
Hu, Huatian
Zheng, Di
Zhang, Daxiao
Deng, Qian
Zhang, Shunping
Xu, Hongxing
description The interaction between plasmons in metal nanostructures and excitons in layered materials attracts recent interests due to its fascinating properties inherited from the two constituents, e.g., the high tunability on its spectral or spatial properties from the plasmonic component, and the large optical nonlinearity or light emitting properties from the excitonic counterpart. Here, we demonstrate light-emitting plexcitons from the coupling between the neutral excitons in monolayer WSe2 and highly confined nanocavity plasmons in the nanocube–over−mirror system. We observe, simultaneously, an anticrossing dispersion curve of the hybrid system in the dark-field scattering spectrum and a 1700 times enhancement in the photoluminescence. We attribute the large photoluminescence enhancement to the increased local density of states by both the plasmonic and excitonic constituents in the intermediate coupling regime. In addition, increasing the confinement of the hybrid systems is achieved by shrinking down the size of the hot spot within the gap between the nanocube and the metal film. Numerical calculations reproduce the experimental observations and provide the effective number of excitons taking part in the interaction. This highly compact system provides a room temperature testing platform for quantum cavity electromagnetics at the deep subwavelength scale.
doi_str_mv 10.1021/acsnano.8b05880
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsnano_8b05880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a725293475</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-51619ff0f59c27c75d47c799e8111b0df92244313266b5233028c61c3a465ca13</originalsourceid><addsrcrecordid>eNp1UMFKw0AQXUSxtXr2JrlL2p3d7CbrTUrUQkERBW9hs920W5JNSLZQb_6Df-iXuCWxNy8zj5n3hnkPoWvAU8AEZlJ1Vtp6muSYJQk-QWMQlIc44R-nR8xghC66bosxi5OYn6MRxYQQCvEYFUuz3rgwrYxzxq6Dl1LvlXG1vQvSfVPWZpjKrqrtz9d32m-DhXW6lcoZj40N3Eb3o0qvjHQ6mNe7pjxIX_XaVPoSnRWy7PTV0Cfo_SF9mz-Fy-fHxfx-GUoqhAsZcBBFgQsmFIlVzFaRr0LoBAByvCoEIVFEgRLOc0ao95EoDorKiDMlgU7QrL-r2rrrWl1kTWsq2X5mgLNDYtmQWDYk5hU3vaLZ5f75I_8vIk-47QlemW3rXWu9gX_P_QK4QHia</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime</title><source>ACS Publications</source><creator>Sun, Jiawei ; Hu, Huatian ; Zheng, Di ; Zhang, Daxiao ; Deng, Qian ; Zhang, Shunping ; Xu, Hongxing</creator><creatorcontrib>Sun, Jiawei ; Hu, Huatian ; Zheng, Di ; Zhang, Daxiao ; Deng, Qian ; Zhang, Shunping ; Xu, Hongxing</creatorcontrib><description>The interaction between plasmons in metal nanostructures and excitons in layered materials attracts recent interests due to its fascinating properties inherited from the two constituents, e.g., the high tunability on its spectral or spatial properties from the plasmonic component, and the large optical nonlinearity or light emitting properties from the excitonic counterpart. Here, we demonstrate light-emitting plexcitons from the coupling between the neutral excitons in monolayer WSe2 and highly confined nanocavity plasmons in the nanocube–over−mirror system. We observe, simultaneously, an anticrossing dispersion curve of the hybrid system in the dark-field scattering spectrum and a 1700 times enhancement in the photoluminescence. We attribute the large photoluminescence enhancement to the increased local density of states by both the plasmonic and excitonic constituents in the intermediate coupling regime. In addition, increasing the confinement of the hybrid systems is achieved by shrinking down the size of the hot spot within the gap between the nanocube and the metal film. Numerical calculations reproduce the experimental observations and provide the effective number of excitons taking part in the interaction. This highly compact system provides a room temperature testing platform for quantum cavity electromagnetics at the deep subwavelength scale.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.8b05880</identifier><identifier>PMID: 30222317</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2018-10, Vol.12 (10), p.10393-10402</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-51619ff0f59c27c75d47c799e8111b0df92244313266b5233028c61c3a465ca13</citedby><cites>FETCH-LOGICAL-a399t-51619ff0f59c27c75d47c799e8111b0df92244313266b5233028c61c3a465ca13</cites><orcidid>0000-0002-8491-0903 ; 0000-0002-1718-8834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.8b05880$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.8b05880$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30222317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Jiawei</creatorcontrib><creatorcontrib>Hu, Huatian</creatorcontrib><creatorcontrib>Zheng, Di</creatorcontrib><creatorcontrib>Zhang, Daxiao</creatorcontrib><creatorcontrib>Deng, Qian</creatorcontrib><creatorcontrib>Zhang, Shunping</creatorcontrib><creatorcontrib>Xu, Hongxing</creatorcontrib><title>Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The interaction between plasmons in metal nanostructures and excitons in layered materials attracts recent interests due to its fascinating properties inherited from the two constituents, e.g., the high tunability on its spectral or spatial properties from the plasmonic component, and the large optical nonlinearity or light emitting properties from the excitonic counterpart. Here, we demonstrate light-emitting plexcitons from the coupling between the neutral excitons in monolayer WSe2 and highly confined nanocavity plasmons in the nanocube–over−mirror system. We observe, simultaneously, an anticrossing dispersion curve of the hybrid system in the dark-field scattering spectrum and a 1700 times enhancement in the photoluminescence. We attribute the large photoluminescence enhancement to the increased local density of states by both the plasmonic and excitonic constituents in the intermediate coupling regime. In addition, increasing the confinement of the hybrid systems is achieved by shrinking down the size of the hot spot within the gap between the nanocube and the metal film. Numerical calculations reproduce the experimental observations and provide the effective number of excitons taking part in the interaction. This highly compact system provides a room temperature testing platform for quantum cavity electromagnetics at the deep subwavelength scale.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKw0AQXUSxtXr2JrlL2p3d7CbrTUrUQkERBW9hs920W5JNSLZQb_6Df-iXuCWxNy8zj5n3hnkPoWvAU8AEZlJ1Vtp6muSYJQk-QWMQlIc44R-nR8xghC66bosxi5OYn6MRxYQQCvEYFUuz3rgwrYxzxq6Dl1LvlXG1vQvSfVPWZpjKrqrtz9d32m-DhXW6lcoZj40N3Eb3o0qvjHQ6mNe7pjxIX_XaVPoSnRWy7PTV0Cfo_SF9mz-Fy-fHxfx-GUoqhAsZcBBFgQsmFIlVzFaRr0LoBAByvCoEIVFEgRLOc0ao95EoDorKiDMlgU7QrL-r2rrrWl1kTWsq2X5mgLNDYtmQWDYk5hU3vaLZ5f75I_8vIk-47QlemW3rXWu9gX_P_QK4QHia</recordid><startdate>20181023</startdate><enddate>20181023</enddate><creator>Sun, Jiawei</creator><creator>Hu, Huatian</creator><creator>Zheng, Di</creator><creator>Zhang, Daxiao</creator><creator>Deng, Qian</creator><creator>Zhang, Shunping</creator><creator>Xu, Hongxing</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8491-0903</orcidid><orcidid>https://orcid.org/0000-0002-1718-8834</orcidid></search><sort><creationdate>20181023</creationdate><title>Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime</title><author>Sun, Jiawei ; Hu, Huatian ; Zheng, Di ; Zhang, Daxiao ; Deng, Qian ; Zhang, Shunping ; Xu, Hongxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-51619ff0f59c27c75d47c799e8111b0df92244313266b5233028c61c3a465ca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jiawei</creatorcontrib><creatorcontrib>Hu, Huatian</creatorcontrib><creatorcontrib>Zheng, Di</creatorcontrib><creatorcontrib>Zhang, Daxiao</creatorcontrib><creatorcontrib>Deng, Qian</creatorcontrib><creatorcontrib>Zhang, Shunping</creatorcontrib><creatorcontrib>Xu, Hongxing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jiawei</au><au>Hu, Huatian</au><au>Zheng, Di</au><au>Zhang, Daxiao</au><au>Deng, Qian</au><au>Zhang, Shunping</au><au>Xu, Hongxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-10-23</date><risdate>2018</risdate><volume>12</volume><issue>10</issue><spage>10393</spage><epage>10402</epage><pages>10393-10402</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The interaction between plasmons in metal nanostructures and excitons in layered materials attracts recent interests due to its fascinating properties inherited from the two constituents, e.g., the high tunability on its spectral or spatial properties from the plasmonic component, and the large optical nonlinearity or light emitting properties from the excitonic counterpart. Here, we demonstrate light-emitting plexcitons from the coupling between the neutral excitons in monolayer WSe2 and highly confined nanocavity plasmons in the nanocube–over−mirror system. We observe, simultaneously, an anticrossing dispersion curve of the hybrid system in the dark-field scattering spectrum and a 1700 times enhancement in the photoluminescence. We attribute the large photoluminescence enhancement to the increased local density of states by both the plasmonic and excitonic constituents in the intermediate coupling regime. In addition, increasing the confinement of the hybrid systems is achieved by shrinking down the size of the hot spot within the gap between the nanocube and the metal film. Numerical calculations reproduce the experimental observations and provide the effective number of excitons taking part in the interaction. This highly compact system provides a room temperature testing platform for quantum cavity electromagnetics at the deep subwavelength scale.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30222317</pmid><doi>10.1021/acsnano.8b05880</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8491-0903</orcidid><orcidid>https://orcid.org/0000-0002-1718-8834</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2018-10, Vol.12 (10), p.10393-10402
issn 1936-0851
1936-086X
language eng
recordid cdi_crossref_primary_10_1021_acsnano_8b05880
source ACS Publications
title Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A49%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light-Emitting%20Plexciton:%20Exploiting%20Plasmon%E2%80%93Exciton%20Interaction%20in%20the%20Intermediate%20Coupling%20Regime&rft.jtitle=ACS%20nano&rft.au=Sun,%20Jiawei&rft.date=2018-10-23&rft.volume=12&rft.issue=10&rft.spage=10393&rft.epage=10402&rft.pages=10393-10402&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.8b05880&rft_dat=%3Cacs_cross%3Ea725293475%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30222317&rfr_iscdi=true